
Memory Management with Explicit Regions

by

David Edward Gay

Engineering Diploma (Ecole Polytechnique Fédérale de Lausanne, Switzerland) 1992
M.S. (University of California, Berkeley) 1997

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Alex Aiken, Chair
Professor Susan L. Graham
Professor Gregory L. Fenves

Fall 2001

The dissertation of David Edward Gay is approved:

Chair Date

Date

Date

University of California at Berkeley

Fall 2001

Memory Management with Explicit Regions

Copyright 2001

by

David Edward Gay

1

Abstract

Memory Management with Explicit Regions

by

David Edward Gay

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Alex Aiken, Chair

Region-based memory management systems structure memory by grouping objects

in regions under program control. Memory is reclaimed by deleting regions, freeing all

objects stored therein. Our compiler for C with regions, RC, prevents unsafe region deletions

by keeping a count of references to each region. RC’s regions have advantages over explicit

allocation and deallocation (safety) and traditional garbage collection (better control over

memory), and its performance is competitive with both—from 6% slower to 55% faster

on a collection of realistic benchmarks. Experience with these benchmarks suggests that

modifying many existing programs to use regions is not difficult.

An important innovation in RC is the use of type annotations that make the

structure of a program’s regions more explicit. These annotations also help reduce the

overhead of reference counting from a maximum of 25% to a maximum of 12.6% on our

benchmarks. We generalise these annotations in a region type system whose main novelty

is the use of existentially quantified abstract regions to represent pointers to objects whose

region is partially or totally unknown.

A distribution of RC is available at http://www.cs.berkeley.edu/~dgay/rc.

Professor Alex Aiken
Dissertation Committee Chair

i

Contents

List of Figures iv

List of Tables vi

1 Introduction 1

1.1 Contributions . 2
1.1.1 Language Design . 2
1.1.2 Types . 3
1.1.3 Implementation Techniques . 4
1.1.4 Detailed Performance Study . 4

1.2 Comparison to Other Memory-Management Styles 5
1.2.1 Explicit Deallocation . 5
1.2.2 Tracing Garbage Collection . 6
1.2.3 Reference-counted Garbage Collection 8

1.3 Dissertation Outline . 8

2 Related Work 10

2.1 Regions . 10
2.1.1 Static Safety . 10
2.1.2 Dynamic Safety . 12
2.1.3 No Safety . 14

2.2 Other Styles of Memory-Management . 15
2.3 Safe C Dialects . 15

2.3.1 Language Changes . 16
2.3.2 Conservative Garbage Collection . 16
2.3.3 Instrumentation . 17
2.3.4 Interpretation . 17

3 Language Design 19

3.1 C@ . 19
3.2 RC . 22

3.2.1 C@ Lessons . 23
3.2.2 Assumptions . 25
3.2.3 Region Library . 25

ii

3.2.4 Type Qualifiers . 30
3.2.5 Restrictions . 32
3.2.6 Linking to Existing Object Code . 36
3.2.7 Fallback to C . 36
3.2.8 Debugging Support . 37
3.2.9 Examples . 37

3.3 Titanium . 41
3.3.1 Parallelism in Titanium . 42
3.3.2 Shared and Private Regions . 43
3.3.3 Region-Based Allocation in Titanium 44
3.3.4 Titanium Example . 45

3.4 RC Extensions . 47
3.4.1 Alternative semantics for deleteregion 47
3.4.2 Further Type Annotations in RC . 48
3.4.3 Expressing Locality . 50

4 Implementation Techniques 52

4.1 Compiling to C . 52
4.2 Region Library . 53

4.2.1 Regions . 53
4.2.2 Allocators . 55
4.2.3 Page Allocator . 56
4.2.4 Page Map . 58

4.3 Reference Counting . 59
4.3.1 Deleting Regions . 61
4.3.2 Reference Counting for Local Variables 61
4.3.3 Local Variable Reference Counts in C@ 62
4.3.4 Local Variable Reference Counts in RC 64
4.3.5 Alternate Reference Counting Implementations 67
4.3.6 Variations on Standard Reference Counting 68
4.3.7 Reference Counts Between Pairs of Regions 69

4.4 Parallelism . 72
4.4.1 Parallel Region Implementation . 73
4.4.2 Creating and Deleting Regions . 74

4.5 Real-Time Regions . 76

5 rlang 78

5.1 rlang Types . 78
5.2 Region Type Checking in rlang . 80
5.3 Semantics . 84
5.4 Soundness . 88
5.5 Soundness Proof . 90
5.6 Translating RC to rlang . 99
5.7 Alternate Translations of RC to rlang . 101

5.7.1 Extensions to RC . 102

iii

5.7.2 Runtime Checks . 102
5.7.3 Annotation Inference . 103

6 Results 105

6.1 Benchmarks . 105
6.2 Region Structure . 106
6.3 Changes to Benchmarks . 109
6.4 Allocators and Test Environment . 112
6.5 Benchmark Behaviour . 112
6.6 Memory Usage . 115
6.7 Performance . 117

6.7.1 Performance vs Other Allocation Techniques 117
6.7.2 Performance of Alternative Reference-counting Implementations . . 119
6.7.3 Reference-counting Overhead . 120

6.8 Qualifiers . 121
6.9 Local Variables . 126
6.10 Other Overheads . 128
6.11 Atomic Swaps . 128
6.12 Summary . 129

7 Conclusion 131

7.1 Strengths and Weaknesses of Regions . 132
7.2 Extensions . 133

Bibliography 135

A Standard C Library Compatibility 142

iv

List of Figures

1.1 An example of region-based allocation. 2

3.1 C@ Region API . 20
3.2 List copy using regions in C@. 21
3.3 An example of region-based allocation. 25
3.4 Region API . 26
3.5 An example of region-based allocation in Titanium. 42
3.6 A larger Titanium example . 46

4.1 Region structure . 54
4.2 Allocator structure . 55
4.3 Block header structure . 57
4.4 Reference counting and annotation checking 60
4.5 Region scan during deleteregion(r). 62
4.6 Reference counting including same-region references. 68
4.7 Reference counting excluding parent pointers 69
4.8 Reference counting for reference counts between pairs of regions 71
4.9 Reference counting in a parallel language 74

5.1 Region type language . 79
5.2 rlang, a simple imperative language with regions 80
5.3 Region Type Checking . 81
5.4 Semantic reduction rules . 85
5.5 Semantic assignment rules . 86

6.1 Objects allocated, distributed by object size 113
6.2 Bytes allocated, distributed by object size 113
6.3 Maximum Memory Usage (in kB) and Overheads 116
6.4 Execution time . 117
6.5 Execution time, showing time spent in memory management 118
6.6 L2 cache misses . 118
6.7 Execution time with alternative reference-counting (non-zero time origin) . 119
6.8 Execution time with RC-pairs (non-zero time origin) 120
6.9 Effectiveness of qualifiers and qualifier check removal 122

v

6.10 Execution time with sameregion, parentptr and traditional (non-zero
time origin) . 123

6.11 Cost of reference-counting local variables (non-zero time origin) 127
6.12 Cost of not using deletes qualifier (non-zero time origin) 127
6.13 Other RC overheads (non-zero time origin) 128
6.14 Overhead of using atomic swap for pointer writes 129
6.15 RC vs näıve reference-counting . 129

vi

List of Tables

6.1 Complexity of benchmark changes, in number of lines changed. 110
6.2 Memory Allocation Rates . 113
6.3 Region Statistics . 114
6.4 Pointer write statistics . 115
6.5 Maximum Memory Usage (in kB) and Overheads 116
6.6 Reference counting overhead in RC and C@ 121
6.7 sameregion, parentptr and traditional: static statistics 121
6.8 sameregion, parentptr and traditional: dynamic statistics 122
6.9 Reference count and runtime check rates . 123
6.10 Local variable reference count operation rates 127

vii

Acknowledgements

I thank my parents for bringing me here, and my advisor Alex Aiken for his help and

advice. Many thanks also to my officemates over the years, Anders, Jeff, John, Manuel,

Megan, Raph and Zhendong, for lots of interesting and fun conversations, and for putting

up with the cheese.

To Olga, for the future.

David Gay

December 2001

1

Chapter 1

Introduction

Much research has been devoted to studies of and algorithms for memory man-

agement based on garbage collection or explicit deallocation (as in C’s malloc/free). An

alternative approach, region-based memory management, has been known for decades, but

has not been well-studied until recently. In region-based memory management each allo-

cated object is placed in a program-specified region. Objects cannot be freed individually;

instead regions are deleted with all their contained objects. Figure 1.1’s simple example

builds a list and its contents (the data field) in a single region, outputs the list, then frees

the region and therefore the list. The sameregion type qualifier is discussed below.

Traditional region-based systems such as arenas [32] are unsafe: deleting a region

may leave dangling pointers that are subsequently accessed. We distinguish two kinds of

memory safety: temporal safety (no accesses to freed objects) and spatial safety (no accesses

beyond the bounds of objects). In this dissertation, we design, implement and evaluate RC,

a dialect of C with regions that guarantees temporal safety dynamically. RC maintains

for each region r a reference count of the number of external pointers to objects in r,

i.e., of pointers not stored within r. Calls to deleteregion fail if this count is not zero.

While our results are presented in the context of a C dialect, we show how our our design

and techniques can be applied to other languages, including languages with support for

parallelism.

RC does not address the issue of spatial safety. In the rest of this dissertation, we

will use the words safe, unsafe or safety to refer to temporal safety.

2

struct rlist {

struct rlist *sameregion next;

struct finfo *sameregion data;

} *rl, *last = NULL;

region r = newregion();

while (...) { /* build list */

rl = ralloc(r, struct rlist);

rl->data = ralloc(r, struct finfo);

... /* fill in data */

rl->next = last; last = rl;

}

output_rlist(last);

deleteregion(r);

Figure 1.1: An example of region-based allocation.

1.1 Contributions

This dissertation makes contributions in four areas. Firstly, RC is a realistic de-

sign for region-based programming in conventional programming languages. Our second

contribution is in the area of type systems: RC’s design incorporates type information that

both makes the structure of region-based programs more explicit and reduces the cost of

reference-counting. Thirdly, RC’s design led to a set of novel implementation techniques.

Our final contribution is a detailed performance study of region-based programming, in-

cluding a comparison with malloc/free and conservative garbage collection.

1.1.1 Language Design

RC’s design, presented in Chapter 3, is based on the lessons learned from an earlier

version of C-with-regions, C@ [26]. We have used RC in large applications (Chapter 6.1)

and found programming with regions both straightforward and productive. We found that

many existing applications could be translated to RC’s regions without too much difficulty.

We present our experience with this translation process in Chapter 6.3.

Region-based programming is not restricted to C. We also included a similar design

for region-based programming in Titanium [64], a dialect of Java designed for parallel,

scientific computing (Chapter 3.3).

3

1.1.2 Types

The major change in RC over our previous system C@ [26], is the addition of

static information in the form of three novel type annotations: sameregion, traditional

and parentptr. These annotations are based on our observations of common programming

patterns in large region-based applications:

• A pointer declared sameregion is internal, i.e., it is null or points to an object in

the same region as the pointer’s containing object. Sameregion pointers capture the

natural organisation that places all elements of a data structure in one region.

• A pointer declared traditional never points to an object allocated in a region, e.g., it

may be the address of a local variable. The most important use of traditional pointers

is in integrating legacy code into region-based applications.

• In RC, a region can be created as a subregion of an existing region. A region can only

be deleted if it has no remaining subregions. A pointer declared parentptr is null or

points upwards in the hierarchy of regions.

These type annotations both make the structure of an application’s memory man-

agement more explicit and improve the performance of the reference counting as assign-

ments to sameregion, traditional or parentptr pointers never update reference counts.

Excepting one benchmark in which reference counting overhead was negligible, we found

that between 35% and 99.99% of pointer assignments executed were to annotated types.

The correctness of assignments to annotated pointers is enforced by runtime checks (Chap-

ter 3.2.4).

We also designed a type system for dynamically checked regions that provides a for-

mal framework for annotations such as sameregion, traditional and parentptr. Analysis

of the translation of RC programs into rlang, a language based on this type system, allows

us to statically eliminate the checks from many runtime assignments to annotated pointers

(Chapter 5). On our benchmarks, between 37% and 99.99% of checks are eliminated.

The combination of type annotations and static elimination of runtime checks

reduces the largest reference counting overhead from 22.3% to 12.6% of runtime. For a full

discussion of the results of the qualifiers and the qualifier-runtime-check elimination, see

Chapter 6.8.

4

1.1.3 Implementation Techniques

Our dissertation proposes two new variations on the theme of deferred reference

counting [22], to reduce the cost of reference counting for local variables (Chapter 4.3.2):

• Lazy stack scanning, which scans the stack for references to regions when deleteregion

is called. This technique is suitable when integrating regions into an existing compiler,

as it requires knowledge of the stack layout. We used this approach in C@.

• Moving reference-count operations for local variables away from the assignment state-

ments, which allows many of these operations to be eliminated. We found that a

simple scheme (placing reference-count operations only around calls to functions that

might delete a region) was nearly as good as a provably optimal scheme (see Function

vs Optimal in Chapters 4.3.2 and 6.9). The straightforward approach to handling

local variable reference-counts gives overheads up to 25% on our benchmarks. With

the Function scheme, our highest overhead is 12.6%.

These approaches only involve moving reference-count operations around, rather than

exploiting knowledge of the stack layout, which allows compilation into C. We used

this approach in RC, allowing RC to be used on any platform with any C compiler.

To support efficient reference-counting for parallel programming languages, we

propose the use of a separate reference-count per thread for each region. This allows us

to avoid any synchronisation operations when updating reference counts (though we still

need to update pointers via an atomic swap operation). This approach would be prohibitive

with traditional reference-counting which has a reference count per object and must often

check reference counts, but is quite reasonable with region-based reference-counting where

reference-counts are far less numerous and only checked when deleting regions.

1.1.4 Detailed Performance Study

We used the benchmarks of Chapter 6.1 to perform a detailed comparison of region-

based programming with malloc/free and conservative garbage collection. We compared

memory usage (Chapter 6.6) and performance (Chapter 6.7) of both unsafe regions (i.e.,

with no safety guarantees, implemented without reference counting) and RC (with reference

counting) with Doug Lea’s high quality malloc/free implementation (see Chapter 6.4) and

the Boehm-Weiser conservative garbage collector [13]. We found that safe regions are from

5

6% slower to 55% faster, and that memory usage is competitive (from 19% less to 4% more)

except on applications which need only a few 100kB (up to 2.7x more memory needed for

RC’s regions).

1.2 Comparison to Other Memory-Management Styles

We compare region-based programming with the two traditional memory man-

agement styles, garbage collection and explicit deallocation. We distinguish tracing garbage

collection (which periodically explores the graph of all reachable objects to identify garbage)

from reference-counted garbage collection (which keeps a reference count per object, similar

to RC’s reference count per region) as they have different advantages and disadvantages.

RC’s regions are well-suited to real-time use as all operations take an easily pre-

dictable amount of time (constant or linear), as discussed in Chapter 4.5. We mention

real-time issues as they relate to each style of memory management.

We assume here, and in the rest of this dissertation, basic familiarity with tech-

niques for garbage collection and explicit deallocation. Good overall surveys can be found

in Wilson et al’s garbage collection [60, 61] and explicit deallocation [62] papers.

1.2.1 Explicit Deallocation

Our region model is reminiscent of malloc/free in that allocation and deallocation

are explicit. This gives the programmer increased control over the application, in particular

increased control over memory usage.

The biggest problem with malloc/free is the lack of safety. This is a source of

many hard-to-find bugs, as the symptoms of a mistaken deallocation of an object o show

up at an unrelated point in the program. A problem will only occur when o’s memory

is used for a new object n, and o is read after a write to n (or vice-versa). RC avoids

this problem by preventing deallocation of regions to which references remain. Even unsafe

regions reduce the problem of incorrect deallocation to some extent: there are far fewer

regions than individual objects, therefore it is easier for the programmer to keep track of

these regions and deallocate them at the correct time.

A related problem with malloc/free is memory leaks. It is easy to forget to

deallocate objects; typical malloc/free implementations provide no help in finding leaks.

6

Reference-counted regions can easily provide automatic deallocation of unreferenced re-

gions by periodically checking the reference-counts of all regions and deallocating those

whose count is zero. We did not choose to follow this approach in RC as we wished to

preserve source-level compatibility with non-reference-counted regions. As with incorrect

deallocations, the fact that there are fewer regions than objects helps even unsafe regions

avoid leaks to some extent.

The last two points can be summarised as “malloc/free is hard to use”. Appli-

cations are hard to write as the programmer must carefully figure out where every object

will be deallocated, extra code must be written to deallocate data structures (e.g., trees),

and bugs are hard to find. A number of commercial tools (Purify [33], CodeCenter [37])

exist to help address these problems, but they have a significant performance cost and do

not detect all problems (they only guarantee spatial safety, not temporal safety). Regions

reduce the complexity of memory management by reducing the number of entities that have

to be managed, making applications easier to write. Reference-counted regions help find

deallocation errors where they occur. Our type qualifiers help express a program’s mem-

ory structure and catch violations of this structure at the assignment where the violation

occurs.1

Performance is good with malloc/free, but even better with unsafe regions. On

the moss benchmark, regions (safe or unsafe) are 49% faster than malloc/free because

they allow the programmer to optimise the moss’s locality and hence reduce cache misses

(see the discussion below). RC’s safe regions generally have performance competitive with

malloc/free (6% to 16% faster), except on moss (where RC is 48% faster). As discussed

above, memory usage of our regions is generally competitive with malloc/free, except when

applications use many small regions.

Malloc/free implementations can be real-time (e.g., the allocator underlying John-

stone’s real-time garbage collector [35]).

1.2.2 Tracing Garbage Collection

Deallocation is not explicit with garbage collection, and may occur significantly

later than the last use of deallocated objects. This has two causes: garbage collection

1A parentptr type qualifier helped us find a bug in RC where we had placed an object in the wrong
region. Without the qualifier, the program would have failed at the region deallocation rather than at the
assignment statement, making the problem harder to find.

7

happens at infrequent intervals and references to an object may remain even after it is no

longer used. This last problem can lead to memory leaks even with garbage collection,

as shown by the usefulness of heap profiling tools for garbage-collected languages [43, 45].

Programmers using garbage-collection have little control over object deallocation, which

can lead to higher memory usage. Additionally, tracing garbage collectors require some

fraction of memory over the application’s requirement to perform efficiently. Wilson [61,

p58] suggests a typical space overhead of 100%. On our benchmarks, we see space overheads

between 44% and 772% for the Boehm-Weiser conservative garbage collector. In compar-

ison, we find overheads between 2% and 174% for unsafe regions (with most benchmarks

below 26%), and between 9% and 305% for RC (with most benchmarks below 41%). See

Chapter 6.6 for more details.

Garbage collection is easier to use than regions as there is no need to track allocated

objects or to write any deallocation code. But, as just discussed, this loss of control leads

to increased memory usage and the possibility of memory leaks. In contrast, the control

over deallocation of region-based memory management helps reduce space usage. Our

reference-counts help detect leaks due to remaining references as these references will cause

deleteregion to fail. We believe that while region-based memory-management requires

more thought when designing a program, this extra thought pays off in better understanding

of how objects are used and in reduced memory usage. In converting a garbage-collected

program to regions, we found a bug where the application was using old instead of new data.

This bug was obvious in the region-based version of the program as the region containing

the old data could not be deleted.

Performance of garbage collection is reasonable, comparable to malloc/free and

regions on most of our benchmarks (from 2% faster to 13% slower than RC). On one

benchmark, garbage collection time is large and RC is 55% faster. Finally, on moss RC’s

locality advantage makes it 36% faster. Wilson [61, p58] suggests that with a good garbage

collector an application should spend approximately 10% of its time in garbage collection,

which is comparable to our 12.6% overhead for reference-counting. Note however that

this 10% figure does not include other costs of garbage-collection (restrictions on pointers,

object layout, optimisation, etc). Finally, the causes of safety overhead are different between

garbage-collection and reference-counting: garbage collection overhead depends on the rate

of allocation, the amount of extra memory available and (for copying collectors) on the size

of objects; reference counting overhead depends mostly on the number of pointer writes and

8

secondarily on the number of pointers per object.

Garbage collection prevents local reasoning about performance by introducing un-

predictable pauses. Real-time collectors [6, 35] eliminated this last problem at the cost of

higher overhead.

1.2.3 Reference-counted Garbage Collection

Traditional reference-counted garbage-collection [16] does not have the space over-

heads of tracing garbage collection discussed above. Its space usage should be comparable

to malloc/free, except that extra space is needed to store a reference count for every object.

Region-based reference-counting has two advantages over traditional reference-

counting:

• Traditional reference-counting does not collect cyclical garbage [40], which can be

addressed with a second mechanism to collect cycles [4]. Region-based reference-

counting tolerates cycles as long as the objects forming the cycle belong to a single

region. RC allow cycles that cross region boundaries to be deleted as long as all regions

containing the cycle are deleted together (using deleteregion array function, see

Chapter 3.2.3).

• The space cost for storing reference-counts is negligible for regions (4 bytes per region),

while it is significant for traditional reference-counting (up to 4 bytes per object,

though various schemes [63, 51] can reduce this space overhead).

Reference-counting has been out of favour because of the problem with cycles,

though Bacon et al’s recent work [4] may change this perception somewhat. Reference-

counting collectors have shorter pauses than traditional collectors, but they are generally

not real-time as a single pointer write can take an unbounded amount of time if it leads to

a large data structure being freed.

1.3 Dissertation Outline

The rest of the dissertation is organised as follows: Chapter 2 discusses more

related work; Chapter 3 presents and motivates our design for region-based programming;

Chapter 4 discusses the implementation of RC, except for the type annotations and type

9

system that are in Chapter 5; our benchmarks are presented, and their performance analysed

in Chapter 6. Finally, we present our conclusions in Chapter 7.

Chapter 4.5 discusses the changes necessary to make RC’s regions real-time. .

Of course, malloc/free implementations can also be real-time, but without safety. And as

mentioned above, real-time garbage collectors have a significant performance penalty.

10

Chapter 2

Related Work

We present three strands of related work: other region-based system (Chapter 2.1),

other styles of memory-management (Chapter 2.2) and other systems that bring temporal

and/or spatial safety to C or C++ (Chapter 2.3).

2.1 Regions

We divide this work into three parts: region-systems based on a region-type system

which statically guarantees the safety of deleteregion (Chapter 2.1.1), region-systems with

dynamic safety (Chapter 2.1.2) and unsafe region systems (Chapter 2.1.3).

2.1.1 Static Safety

The original region type system is part of Tofte and Talpin’s region inference

system [55], which automatically infers for ML programs how many regions should be

allocated, where these regions should be freed, and to which region each allocation site

should write. Although very sophisticated, the Tofte/Talpin system relies critically on the

fact that regions, region allocation, and region deallocation are introduced by the compiler

and not by the programmer. Besides being fully automatic, the Tofte/Talpin system has

the advantage that the runtime overhead for memory management is reduced to an absolute

minimum while also being safe. Unfortunately, region inference is not perfect. To avoid

leaking a great deal of memory it is necessary for the programmer to understand the regions

inferred by the compiler and to adjust the program so that the compiler infers better region

assignments. Second, optimizations beyond the basic inference procedure make an enormous

11

difference in memory management performance [1, 10]. Both of these properties suggest

that explicit first-class regions may be appropriate, but combining explicit programmer-

controlled regions with region inference appears to be a very difficult problem.

Tofte and Talpin’s type system has been extended by Crary, Walker and Mor-

risett [19] and again by Walker and Morrisett [57] to allow more flexible region type struc-

tures. In particular, Walker and Morrisett [57] propose a form of existentially quantified

regions which allows for types such as a list of distinct regions (the types in the earlier

systems were restricted to describing structures allocated in a finite set of regions).

Christiansen et al [15] extend C++ to include safe region-based memory man-

agement, based on Tofte and Talpin’s type system. Class and method types include region

annotations, and regions must be allocated in a stack-like fashion as with Tofte and Talpin’s

region inference. Deline and Fähndrich [20] have designed a programming language, Vault,

that incorporates Walker and Morrisett’s type system and allows static verification of re-

gion and other resource usage. Morrisett’s Cyclone project at Cornell [25] is similar: it is a

C-like language with statically-checked regions based on Walker and Morrisett’s type sys-

tem. Cyclone’s data structure representations are designed to interoperate with C. Cyclone

includes a garbage-collected heap in addition to region-based allocation.

There are two important differences between the type system of Walker and Mor-

risett and the type system of rlang (which generalises and formalises RC’s type annotations,

as detailed in Chapter 5) and hence between Vault or Cyclone (when using regions rather

than the garbage-collected heap) and RC:

• Walker and Morrisett’s type system can statically verify the safety of deleteregion,

while rlang’s cannot.

• rlang can represent the type structure of any existing program. For instance, the

following program cannot be typechecked in Walker and Morrisett’s system:

region r[n];

struct data *d[m];

for (i = 0; i < n; i++) r[i] = newregion();

for (i = 0; i < m; i++)

d[i] = ralloc(r[random(0, n)], ...);

There is a type for r, but no type for d in Walker and Morrisett’s type system. This

code is not very useful, but similar examples are found in real programs, e.g., one of our

12

benchmarks contains a list of nested environments with each environment allocated

in its own region. Declarations are looked up in these nested environments, with the

returned pointers stored in a separate data structure.

Our system preserves the safety of deleteregion via reference counting. We

believe rlang’s gain in expressivity, which allows straightforward porting of existing unsafe

region programs to RC (even large ones such as the Apache web server) is in most cases

worth the loss of static checking of deleteregion.

2.1.2 Dynamic Safety

We found that our previous version of C with safe regions, C@, had performance

and space usage competitive (sometimes better, sometimes slightly worse) with explicit

allocation and deallocation and with garbage collection [26]. C@’s overhead due to reference

counting was reasonable (from negligible to 17% of runtime). Our new system, RC, has

lower reference count overhead in absolute time and as a percentage of runtime, allows use

of any C compiler rather than requiring modification of an existing compiler (lcc [24] for

C@) and incorporates some static information about a program’s region structure.

Stoutamire [49] adds zones, which are garbage-collected regions, to Sather [50]

to allow explicit programming for locality. His benchmarks compare zones with Sather’s

standard garbage collector. Reclamation is still on an object-by-object basis.

Bobrow [11] is the first to propose the use of regions to make reference counting

tolerant of cycles. This idea is taken up by Ichisugi and Yonezawa [34] for use in distributed

systems. Neither of these papers includes any performance measurements.

Real-Time Java [14] is an extension of Java for real-time computing. It includes

a version of regions, called ScopedMemory areas. A thread enters an area A by calling

A.enter(o), where o is an object with a run method. The area calls o.run(), and all

subsequent allocations are made from A. When o.run() terminates, the thread exits A and

allocations revert to the previously entered area. Each thread thus has a stack of entered

areas, and may enter an area multiple times. If thread 1 creates thread 2, thread 2 inherits

a copy of thread 1’s area stack. Different threads can enter areas in different orders, e.g.,

thread 1 can enter area A then B, while thread 2 enters area B then A. The objects

in an area A are deallocated when the last thread exits A (this is detected by keeping a

count of the number of threads which have entered an area). Temporal safety is guaranteed

13

by the following rule: a thread may not write a reference of an object in area A into an

object in area B if it entered area B after A (note that this means that only the oldest

entry on a thread’s area stack is relevant for safety checking). Also, references to objects in

ScopedMemory areas may not be written to static fields.

This model is reminiscent of RC’s subregions: entering an area A from an area B is

similar to creating a subregion of B. The restriction on pointers in Real-Time Java is then

the same as requiring that all pointers be qualified with RC’s parentptr type qualifier. At

first glance, there is a significant different between Real-Time Java and RC: the fact that

different threads can enter the same regions in a different order means that there is no area

hierarchy comparable to the hierarchy of regions built by newregion/newsubregion.

However, at a deeper level this difference disappears: Real-Time Java’s rules are

such that when a thread t enters an area A that is not already on its area stack it cannot

ever share a reference to an object in A with any other thread t′, except if t creates t′

directly or indirectly1 before exiting A. The Real-Time Java rules also guarantee that after

a thread exits the last entry for an area A on its area stack it cannot refer to any of the

objects it created in A.2 These consequences allows us to emulate Real-Time Java’s model

with our region model as follows:

• For each thread t and area A, we associate a region At. Given two arbitrary threads

t and t′, At may or may not equal At′ .

• Allocations in thread t from area A are allocations from region At.

• If a thread t, in area B, enters an area A which is not on its area stack: we set

At = newsubregion(Bt).

• If a thread t creates a thread t′, we set A′

t = At for all threads A on the area stack of

t′.3

• If a thread t enters an area A which is already on its area stack, nothing changes.

• All pointers are qualified with parentptr.

• When a thread exits an area A which is still on its area stack, nothing happens.

1By indirect creation we mean that t creates a thread t′′ that creates t′ directly or indirectly.
2If these two consequences did not hold, Real-Time Java would not have temporal safety.
3t′ inherited a copy of the area stack of t.

14

• When a thread exits an area A which has no other entries on the area stack: if some

other thread shares At, nothing happens (as with standard Real-Time Java areas, this

requires keeping a count of references to regions). If this is the last thread using At,

we delete region At (it’s reference count will be 0 as all pointers are parentptr and

no references to A′ can remain in any local variables).

This translation does not preserve all the properties of Real-Time Java’s area

model. For instance, two independent threads sharing a ScopedMemory area are still allo-

cating from the same pool of memory while in the translation above they would get separate

regions. But this translation does show that RC’s region model is more general than Real-

Time Java’s, and hence suggests ways that Real-Time Java could be extended to have a

more elaborate region model by incorporating other RC features (e.g., the sameregion type

qualifier, or reference-counting). It also means that some of the techniques we developed

for RC can be applied to Real-Time Java: low overhead runtime checks for parentptr

(Chapter 4.3) and qualifier-runtime-check elimination (Chapter 5.6).

Beebee [59] reports on an implementation of Real-Time Java’s regions, and finds

that the overhead of runtime checks on assignments is very high (a slowdown of more

than 5x on one benchmark). We expect that this overhead could be reduced with an

implementation of runtime checks similar to RC’s. Sǎlcianu and Rinard [52] present a

pointer and escape analysis which can eliminate all the runtime checks for the benchmarks

used by Beebee. Runtime checks for Real-Time Java assignments can be eliminated if the

objects allocated in an entered run method cannot escape that method. These results are

not directly comparable to our results for RC because of the differences in the language,

benchmarks and analysis approach.

2.1.3 No Safety

Regions have been used for decades in practice, well before the current research

interest. Ross [44] presents a storage package that allows objects to be allocated in specific

zones. Each zone can have a different allocation policy, but deallocation is done on an

object-by-object basis. Vo’s [56] Vmalloc package is similar: allocations are done in regions

with specific allocation policies. Some regions allow object-by-object deallocation; some

regions can only be freed all at once. Hanson’s [32] arenas are freed all at once. Barrett and

Zorn [7] use profiling to identify allocations that are short-lived, then place these allocations

15

in fixed-size regions. A new region is created when the previous one fills up, and regions

are deleted when all objects they contain are freed. This provides some of the performance

advantages of regions without programmer intervention, but does not work for all programs.

None of these proposals attempt to provide safe memory management.

Some well-known applications have been written using unsafe region libraries, e.g.,

the gcc4 C compiler (before v3) and the apache web server.5

2.2 Other Styles of Memory-Management

There have been a number of studies of the performance of memory allocation.

Grunwald and Zorn [30] and Detlefs, Dosser and Zorn [21] study the performance of various

allocators. Vo’s paper on regions [56] also compares the performance of the malloc/free-like

allocator of the Vmalloc package with other malloc/free implementations. In these last

two papers, Doug Lea’s public-domain malloc/free implementation had the best tradeoff

between efficiency and space usage. We therefore chose the latest version of this allocator

in our comparison of regions to malloc/free in Chapter 6. Grunwald, Zorn and Henderson

compare the performance and cache locality of different allocators [31]. None of these studies

consider region-based allocation.

We have already extensively discussed the tradeoffs between regions, and the two

dominant styles of memory management, garbage collection and explicit allocation and

deallocation in the introduction. Detailed surveys of these styles were performed by Wilson

et al for garbage collection [60, 61] and for explicit allocation and deallocation [62].

2.3 Safe C Dialects

Other approaches have been used to bring safe memory management to C (or

equivalently C++). These can be broadly categorised into language changes (like RC),

conservative garbage collection, code instrumentation and interpretation. Interpretation

and instrumentation introduce significant performance penalties (execution times are at

least doubled in all the systems examined below).

All these systems (except conservative garbage collection) exhibit spatial safety

4http://gcc.gnu.org/
5http://www.apache.org

16

(preventing accesses beyond the bounds of objects), but only some provide temporal safety

(preventing access to freed objects). Spatial safety alone catches many, but not all, violations

of temporal safety: accesses to a pointer p to a freed object are not caught if the freed

memory is allocated to a new object before any access to p. RC provides temporal, but not

spatial safety. We mention below those systems that do not provide temporal safety.

2.3.1 Language Changes

The Safe C++ language proposal [23] modifies C++ in a way that allows tra-

ditional garbage collector implementations. Additionally, programs written in a specific

subset of C++ will then be safe. This system has not been fully implemented.

As already mentioned above, the Cyclone project [25] is a safe, C-like language

designed to allow easy porting of C applications, and interoperation with existing C code.

Unlike Cyclone, RC only brings temporal safety to C code (for instance, it does not check

for out-of-bound array accesses), but will run most C code with no changes.

Necula, McPeak and Weimer’s CCured system [41] brings type safety to C pro-

grams through a mixture of static analysis to find provably safe pointers and runtime-checks

for other pointers. Small changes to existing C applications are required when running them

with CCured. The design of CCured allows the use of accurate garbage collection, though

the current implementation uses the Boehm-Weiser conservative garbage collector to guar-

antee temporal safety.

2.3.2 Conservative Garbage Collection

Conservative garbage collection [13] allows traditional garbage collection to be

used with C programs, without special compiler support.6 Conservative garbage collection

works like a normal garbage collection system but does not have any type information. It

assumes that any value that looks like a pointer is in fact a pointer. Thus it may retain

objects that are in fact unreachable, and cannot copy objects as it cannot safely modify

any values (as these values may not in fact be pointers).

An alternative to purely conservative garbage collection is “mostly-copying col-

lection” [8, 9, 65, 46] which conservatively scans the stack and accurately scans the heap.

6In fact, some compiler optimisations could break conservative garbage collection, but these do not occur
in practice [12].

17

Objects that are not apparently referenced from the stack may be moved during garbage

collection. The programmer must provide scanning-functions for heap-allocated objects.

These scanning functions are similar to the rc adjust x functions required by RC (Chap-

ter 3.2.5). Smith and Morrisett [46] found that their mostly-copying collector required more

memory than the Boehm-Weiser conservative garbage collector, but had a lower runtime

overhead.

2.3.3 Instrumentation

Safe-C [3] changes C’s pointer type to include enough information (object base,

object size and information to identify the object’s lifetime) to allow all pointer accesses

to be checked for safety. These checks, however, come at a high cost: from 130% to 540%

time overhead, and up to 100% space overhead. This compares to RC’s 11% time overhead

and generally competitive space usage (Chapter 6). Also, Safe-C does not have object-code

compatibility with existing C code (e.g., the standard C library) as it changes the pointer

representation.

Patil and Fischer [42] use a representation similar to Safe-C’s to catch all pointer

errors. Their overhead is less than 10%, but is achieved by using a second processor to check

for errors. They also use a reference-counted garbage collector to detect memory leaks (also

using the second processor).

Purify [33]7 is a commercial product that instruments C code to find spatial safety

errors and other problems. Purify does not have temporal safety and has a significant

runtime overhead (5x slower, or worse). However, unlike Safe-C, it preserves object-code

compatibility with C. Several other systems [47, 36, 39] bring spatial, but not temporal,

safety to C. These systems also have significant runtime overheads (no better than Purify).

2.3.4 Interpretation

Saber-C [37] (now called CodeCenter8) is a C interpreter that detects most C

errors through runtime checks. The freely available EiC C interpreter9 catches array-out-

of-bounds accesses, but does not detect attempts to access freed memory. Neither of these

7http://www.rational.com/products/purify unix/index.jsp
8http://www.centerline.com/productline/code center/code center.html
9http://www.kd-dev.com/˜eic/

18

systems have temporal safety. Another freely available C interpreter, CInt10, allows for

optional use of a garbage collector.

All these interpreter-based systems are of course far slower than compiled C code,

or the instrumentation-based systems of the previous section.

10http://root.cern.ch/root/Cint.html

19

Chapter 3

Language Design

Our first design for C with regions was C@ (Chapter 3.1). The lessons we learned

from this prototype were incorporated into our final design for C with regions, RC (Chap-

ter 3.2). We have also incorporated region-based memory allocation into Titanium (Chap-

ter 3.3), a parallel dialect of Java designed for scientific computation. We end this chapter

with a discussion of design alternatives and possible extensions to RC (Chapter 3.4).

3.1 C@

C@ is a dialect of C extended with region-based memory-management. C@ distin-

guishes two kinds of pointers: normal pointers and region pointers, i.e., pointers to objects

in regions. Region pointers are defined with ‘@’ instead of ‘*,’ e.g., int @x. The types

T@ and T∗ are different types, and no implicit conversion exists between them, although

explicit casts are allowed. These casts are unsafe, but are necessary in C@ as the standard

C libraries are not aware of region pointers. In particular deleteregion does not account

for region pointers cast to normal pointers.

We chose to have two kinds of pointers for several reasons. First, region pointers

require reference counting, while normal pointers do not. By having a special type for region

pointers we avoid any overhead when manipulating normal pointers. Secondly, existing C

source code may perform operations that cause problems with region pointers, e.g., casting

integers to pointers. By using a separate type for region pointers, we are forced to address

these issues when converting a C program to use C@’s region’s. Thirdly, existing C object

code does not know about regions and reference counting, so should not be passed region

20

typedef struct region @region;

typedef size_t (*cleanup_t)(/* struct ??? @x */);

typedef size_t (*cleanuparray_t)(/*size_t n, struct ??? @x */);

region newregion(void);

int deleteregion(region *r);

void @ralloc(region r, size_t size, cleanup_t cleanup);

void @rarrayalloc(region r, size_t n, size_t size, cleanuparray_t cleanup);

void @rstralloc(region r, size_t size);

region regionof(void @x);

Figure 3.1: C@ Region API

pointers. We decided, as a result of our experiences with C@, that the disadvantages of

having two kinds of pointers outweighed these benefits. See Chapter 3.2.1 for more details.

Figure 3.1 shows the region interface in C@. A region is created with newregion.

Objects are allocated with ralloc, arrays with rarrayalloc. Objects or arrays that do

not contain any region pointers can be allocated with rstralloc; the cleanup arguments

to ralloc and rarrayalloc are discussed below. The memory returned by ralloc and

rarrayalloc, but not rstralloc, is cleared. An object’s region is returned by regionof.

An attempt to delete a region is made by calling deleteregion(x). The deletion

succeeds if there are no references (excepting *x) to the region in live variables or in other

regions. On success, *x is set to NULL, and 1 is returned. On failure *x is unchanged, and

0 is returned.

Figure 3.2 shows a simple example that copies a list into a region, then later deletes

that region.

C@ has a number of restrictions and changes from regular C:

• All region pointers must be initialised, as the adjustment of a reference count depends

on the old as well as the new value of a pointer. C@ requires that all local variables

be initialised and clears the memory for all objects allocated in regions. If an object

containing region pointers is allocated with malloc or realloc, that object should be

cleared with memset before any of its region pointers are modified.

• C@ forbids the copying of structs or unions containing region pointers.

21

struct list {

int i;

struct list @next;

};

size_t cleanup_list(struct list @x) {

destroy(x->next);

return sizeof *x;

}

struct list @cons(Region r, int x, struct list @l) {

struct list @p = ralloc(r, sizeof(struct list), cleanup_list);

p->i = x; p->next = l;

return p;

}

struct list @copy_list(Region r, struct list @l) {

if (l == NULL) return NULL;

else return cons(r, l->i, copy_list(r, l->next));

}

void work(struct list @l) {

region tmp = newregion();

l = copy_list(tmp, l);

... do something with l ...

deleteregion(&tmp);

}

Figure 3.2: List copy using regions in C@.

• A deleted region r may contain pointers to objects in other regions. To adjust the

reference counts of other regions we examine all the region pointers in objects allocated

in r. The user supplies the function that performs this task as the cleanup argument

to ralloc and rarrayalloc. This function must call destroy on every region pointer

in the allocated object and return the size of the object. We require the user to provide

this function (see cleanup list in Figure 3.2 for an example) for the same reason

that we forbid copying structs or unions that contain region pointers: the presence

of C’s unions makes it impossible for the compiler to locate every region pointer. For

cases without union the cleanup function could be generated automatically by the

22

compiler. This is the approach taken in RC.

• C@ does not support threads.

• As mentioned above, casts to and from region pointers are unsafe, as are casts between

region pointer types. For instance, casting a struct list @ type to char @ and then

copying the contents byte-by-byte is unsafe:

struct list @l1, @l2;

char @c1 = (char @)l1, @c2 = (char @)l2;

int i;

for (i = 0; i < sizeof(struct list); i++) c1[i] = c2[i];

3.2 RC

RC’s design was motivated by lessons learned from C@ (Chapter 3.2.1). This

design is described in Chapters 3.2.2 (assumptions about C), 3.2.3 (region API), 3.2.4 (new

type qualifiers) and 3.2.5 (restrictions in RC not present in C). Chapter 3.2.6 describes the

conditions under which RC programs can invoke C object code. Chapter 3.2.7 explains

how RC programs can be compiled with a regular C compiler (with the loss of all checks

on deleteregion and assignments to qualified pointers). Finally, Chapter 3.2.8 discusses

debugging RC programs and Chapter 3.2.9 gives some more examples of RC code.

We first formally define the meaning of various concepts used in RC:

• region: an unbounded area of memory in which objects can be allocated.

• subregion: a region r may be allocated as a subregion of a region q. We say that r is

a child of q, or q is r’s parent. A region may not be deleted while it has children. We

also define descendant and ancestor regions in the obvious fashion.

• region reference count : the reference count of a region r is the number of pointers

to objects in r from outside r (i.e., from other regions, local and global variables).

References from local variables count as long as the local variable is live. A local

variable whose address is taken is considered live while it is in scope. A region may

not be deleted if its reference count is nonzero.

23

• The traditional region: RC programs may still use malloc and free. The memory

returned by malloc, and memory used for global or local variables is considered to

live in the traditional region. This region may not be deleted.

• A qualified pointer is a pointer qualified with one of the sameregion, traditional

or parentptr qualifiers. An unqualified pointer has none of these qualifiers.

3.2.1 C@ Lessons

The changes from C@ to RC were motivated by lessons learned from porting the

benchmarks of Chapter 6 to C@’s region-based memory management and by some new

design goals:

• C@ was implemented as a modification to an existing C compiler. We wished to

increase RC’s ease of portability by compiling to C. This requires a few restrictions

in RC which were not present in C@: setjmp and longjmp are not supported in RC

and variables and struct or union tags may not shadow each other. RC programs

must also use the deletes keywords on functions that may delete a region. See

Chapters 3.2.4 and 3.2.5 for more details.

• One of our goals in designing RC was to allow RC programs to be compiled with

a regular C compiler with an appropriate region-allocation library. This allows RC

programs to be run in an environment where an RC compiler is not available, at the

expense of the loss of RC’s safety guarantees. As a consequence, in RC, deleteregion

aborts the program if a region still has remaining references rather than returning

a failure code as in C@. In our benchmarks at least, we found this to be of no

consequence: in the C@ version, all our calls to deleteregion had been of the form:

if (!deleteregion(&x))

abort();

• In retrospect, C@’s two kinds of pointers were a mistake:

– They force small syntactic changes (replacing * by @) all over an existing program.

While these are not hard to make, they are pervasive.

– Even in a program that uses regions for all its memory allocation there are

still traditional C pointers: addresses of local or global variables, and objects

24

allocated by the standard C library. Having two kinds of pointers that cannot

be mixed forces some code to be duplicated (for region and traditional pointers)

and makes by-reference arguments hard to use. For instance, in C@ a function

with two results must be declared as

either: void f(int *result1, int *result2);

or: void f(int @result1, int @result2);

In the first case, results cannot be placed in a region, in the second they cannot

be placed in local variables. In RC there is essentially one kind of pointer that

can hold both region and non-region pointers. RC still allows the declaration

of pointers that are always traditional with the traditional type qualifier (see

below).

– The standard C library does not know about region pointers. This forced uses of

casts for all pointer parameters in calls to standard library functions. RC’s use

of a single type of pointer avoids this problem. We document in Chapter 3.2.6

when it is safe to pass region pointers to C object code that was not compiled

with RC (as is generally the case for the standard C library).

• Writing the cleanup functions that are passed as the cleanup argument to ralloc

and rarrayalloc in C@ is time consuming. For most types, RC generates these

functions automatically. The programmer only has to provide these functions for

types containing pointers in unions (see the discussion of union in Chapter 3.2.5).

• We observed that the information provided by the cleanup functions can also be used

to allow copying of structs and unions containing pointers. This operation is thus

allowed in RC.

• Finally, adding an initialisation to every local pointer variable is annoying. In RC,

such variables are automatically initialised to NULL. Note that if you wish RC code to

be compilable with a regular C compiler then you must not rely on this initial value.

RC also incorporates a number of concepts which were not present in C@:

• subregions: we observed that in several of our benchmarks some regions were guaran-

teed to have a lifetime strictly contained within that of another region. In fact, the

apache’s web server’s own regions explicitly incorporate this in the notion of sub-pools.

25

struct rlist {

struct rlist *sameregion next;

struct finfo *sameregion data;

} *rl, *last = NULL;

region r = newregion();

while (...) { /* build list */

rl = ralloc(r, struct rlist);

rl->data = ralloc(r, struct finfo);

... /* fill in data */

rl->next = last; last = rl;

}

output_rlist(last);

deleteregion(r);

Figure 3.3: An example of region-based allocation.

By incorporating subregions, we increase RC’s expressiveness. In conjunction with the

parentptr type qualifier (that expresses that a pointer points from a subregion to a

parent region) subregions helped us catch a memory bug in RC at a point in the code

which made the error obvious.

• Examination of applications written using regions shows that some of their pointers

have properties of interest to both the programmer (to make the intent of the program

clearer and to catch violations of this intent) and to the RC compiler (to reduce the

overhead of maintaining the reference counts). RC allows specification of three such

properties: traditional, sameregion and parentptr. See Chapter 3.2.4 for details.

• Finally, RC includes a richer region API which makes programming more convenient:

a function to copy arrays, rarraycopy (copying objects containing pointers cannot be

done with memcpy); extendable array support with rarrayextend; and some support

for writing generic code (the typed ... functions). See Chapter 3.2.3 for details.

3.2.2 Assumptions

RC assumes a C implementation where filling an object with zero bytes sets all

pointers in that object to NULL. This is not guaranteed by the C standard, but is true on

the vast majority of machines with a C compiler.

3.2.3 Region Library

A simple RC program is given in Figure 3.3. This example builds a list and its

contents (the data field) in a single region, outputs the list, then frees the region and

26

typedef struct region *region;

region newregion(void);

region newsubregion(region r);

void deleteregion(region r) deletes;

void deleteregion_ptr(region *r) deletes;

void deleteregion_array(int n, region *regions) deletes;

/* ralloc, rarrayalloc, rarrayextend are not functions

(they take a type as last argument) */

void *ralloc(region r, type);

void *rarrayalloc(region r, size_t n, type);

void *rarrayextend(region r, void *old, size_t n, type);

/* Miscellaneous allocation functions */

char *rstralloc(region r, size_t size);

char *rstralloc0(region r, size_t size);

char *rstrdup(region r, const char *s);

char *rstrextend(region r, const char *old, size_t newsize);

char *rstrextend0(region r, const char *old, size_t newsize);

/* Out-of-memory handling */

typedef void (*nomem_handler)(void);

nomem_handler set_nomem_handler(nomem_handler newhandler);

/* Miscellaneous functions. rarraycopy is not a function */

region regionof(void *x);

void rarraycopy(void *to, void *from, size_t n, size_t size, type);

/* Dynamic type information and low-level functions.

rctypeof is not a function */

type_t rctypeof(type);

void *typed_ralloc(region r, size_t size, type_t type);

void *typed_rarrayalloc(region r, size_t n, size_t size, type_t type);

void *typed_rarrayextend(region r, void *old, size_t n,

size_t size, type_t type);

void typed_rarraycopy(void *to, void *from, size_t n,

size_t size, type_t type);

Figure 3.4: Region API

27

therefore the list.

RC’s region API is summarised in Figure 3.4. This API defines two types, region

and type t. A value of type region represents a region, and can be freely stored in the

heap, and passed or returned from functions. A value of type type t represents the type

information that RC needs for a particular type. For more details, see Chapter 3.2.3.

ralloc, rarrayalloc, rarrayextend, rarraycopy and rctypeof are not func-

tions (they take a C type as their last argument), but they are presented as functions in

Figure 3.4 for simplicity.

This API is defined by the regions.h header file. This file is automatically in-

cluded at the start of every RC file. It can be useful to explicitly include this file however,

as this well then allow the RC source code to be compiled with a regular C compiler. See

Chapter 3.2.7 for details.

region main

The main function of the program should be called region main rather than main.

Creating Regions

A region is created by calling either newregion() to create a region with no parent,

or newsubregion(r) to create a new region as a child of region r. See the ‘Out-of-memory

handlers’ section below for how newregion and newsubregion behave if they cannot allocate

memory for the new region.

Deleting Regions

A call to deleteregion(r) deletes region r if it’s reference count is zero. If r’s

reference count is non-zero, the program is aborted. If r is a local variable (whose address

is not taken) r is considered to be dead just before the call to deleteregion occurs. If

r is a global variable, or the address of r is in a region other than r, then the call to

deleteregion will abort the program as r’s reference count is non-zero. In this case one

can use deleteregion ptr instead. A call to deleteregion ptr(q) (where q is a pointer

to a region) deletes the region in *q and sets *q to NULL. Calls to deleteregion ptr fail if

*q is not the only reference to region *q.

28

Several regions can be deleted at once with deleteregion array(n, a). This

deletes regions a[0], ..., a[n-1] and sets a[0], ..., a[n-1] to NULL. Deleting a group

of regions succeeds as long as all references to the deleted regions are in a or in one of the

deleted regions. If deleteregion array fails then the program is aborted. An example of

the use of deleteregion array is given with the discussion of cyclical data structures in

the Examples chapter (3.2.9).

See Chapter 3.2.4 for details on the deletes function qualifier.

Allocation

An object of type t is allocated in region r by ralloc(r, t). The type t cannot

be a function or array type, nor can it be a variable-size type (variable-size types are a

gcc-specific extension to C). If t is (or contains) a union type, the programmer may need

to provide a reference-count-adjusting function. See Chapter 3.2.5 for details.

An n element array of objects of type t is allocated in region r by rarrayalloc(r,

n, t). The restrictions on t are the same as with ralloc.

The memory returned by ralloc and rarrayalloc is zero-filled (as with the tra-

ditional C function calloc). This is necessary for correct reference-counting.

A call to rstralloc0(r, n) is equivalent to rarrayalloc(r, n, char). The

rstralloc function is equivalent to rstralloc0 except that it does not zero-fill the allo-

cated memory. A call to rstrdup(r, s) is equivalent to strdup(s) except that the new

string is allocated in region r.

See the ‘Out-of-memory handlers’ section below for behaviour if these functions

cannot allocate the requested memory.

Extendable Arrays

An extendable array, i.e., an array whose size can be extended (or reduced), is

allocated with rarrayextend(r, old, n, t). This creates a new array new of type t

with n elements in region r. If old is NULL the new array is zero-filled and returned. If

old is not NULL then it must have been allocated with rarrayextend in region r and the

same type t. If old had less than n elements then its contents are copied to new and the

extra elements of new are zero-filled, if old had more than n elements then only the first

n elements of old are copied to new. The implementation will try to reuse the memory

29

occupied by old for the new object.

A call to rstrextend0(r, n) is equivalent to rarrayextend(r, n, char). The

rstrextend function is equivalent to rstrextend0 except that it does not zero-fill the

allocated memory.

See the ‘Out-of-memory handlers’ section below for behaviour if these functions

cannot allocate the requested memory.

Out-of-memory Handlers

When any of the allocation functions (and newregion, newsubregion) cannot

obtain the memory they need, they attempt to call a no-memory handler. This handler

is a function with no arguments and no results. If there is no no-memory handler, or the

handler returns then the program is aborted.

The no-memory handler h is set by a call to set nomem handler(h). This returns

the previous no-memory handler. A null value for h means there is no no-memory handler.

A future version of RC will allow for more options than just aborting or exiting

the program.

Miscellaneous Functions

The region of a pointer p is returned by regionof(p). A call to rarraycopy(to,

from, n, t) copies n elements of type t of array from to array to. The source and

destination areas of memory must not overlap. The restrictions on t are the same as with

ralloc. This function is useful as memcpy cannot be used on objects containing pointers

(see Chapter 3.2.5).

Dynamic Types

The functions described above all require that the type of object being allocated

be statically known. In regular C, it is possible to allocate any type of object using malloc

as long as the size of the object is known. This is useful when writing generic types, e.g., an

automatically expanding array. To allow similar code to be written in RC we introduce the

rctypeof(t) syntax (similar to sizeof) which returns the type information needed by RC

when allocating objects. The restrictions on the type t passed to rctypeof are the same as

for ralloc (Chapter 3.2.3).

30

The function typed ralloc behaves identically to ralloc, except that the type to

be allocated (or copied) is specified by its size and type t value. In fact, ralloc is defined

in terms of typed ralloc as follows:

#define ralloc(r, type) typed_ralloc((r), sizeof(type), rctypeof(type))

The functions typed rarrayalloc, typed rarrayextend and typed rarraycopy

have the same relation to rarrayalloc, rarrayextend and rarraycopy as typed ralloc

has to ralloc.

3.2.4 Type Qualifiers

RC introduces three new pointer type qualifiers (sameregion, traditional and

parentptr) and one new function type qualifier (deletes). The syntax for function quali-

fiers is the same as in C++, i.e., they follow the argument list:

int f(int x) deletes;

int f(int x) deletes

{

return x + 1;

}

Function Type Qualifiers

RC requires that any function which may delete a region (including by calling

another function that may delete a region) be annotated with the deletes qualifier. For

instance, the following code will produce a compile-time error:

void f(region r)

{

deleteregion(r);

}

as f must have the deletes annotation. Formally, the rule is that any function that calls

a function with the deletes qualifier must itself have the deletes qualifier.

The deletes annotation is part of a function’s type, so the following code will

produce a warning (this is consistent with gcc’s behaviour on similar type errors):

void f() deletes;

void (*g)();

g = f; /* error: drops the deletes qualifier */

31

The requirement for deletes qualifiers is necessary for efficient reference counting

in the presence of separate compilation.

Pointer-type Qualifiers

The traditional type qualifier (int *traditional x) declares that a pointer is

null or points into the traditional region. Updating a traditional pointer never changes

any reference counts. The compiler guarantees, by static analysis or by insertion of a

runtime check (whose failure aborts the program), that only pointers to the traditional

region are written to traditional pointers. Pointers declared traditional can be used in

any portion of a program where there is a need, for whatever reason, to use conventional C

memory management. Also, pointers to functions are traditional.

We found that complex data structure are often intended to be allocated in a

single region. In that case, the data structure’s internal pointers will never point to another

region (e.g., the next and data fields of rlist in Figure 3.3). The sameregion type qualifier

declares that a pointer stays within the same region or is null. As with the traditional

annotation, writes to sameregion pointers do not change any reference counts (they do

not create or destroy any references from outside the region). The compiler ensures, as for

traditional pointers, that values written to sameregion pointers are either null or belong

to the correct region.

When using subregions to structure an application’s memory management, many

pointer types always point to an object in the same region or a parent, grandparent, . . .

region. Such pointers can be specified with a parentptr type qualifier. Pointers from

parentptr qualified pointers need not be included in the reference counts as RC requires

that subregions be deleted before their parent regions. As with the other qualifiers, the

compiler enforces by static analysis or a runtime check that all assignments to parentptr

fields are correct.

It is not possible to use more than one of these qualifiers on any given pointer, e.g,

int *sameregion traditional x is an error. However different qualifiers can be used for

different pointers in the same type, e.g., int *sameregion *traditional x.

32

3.2.5 Restrictions

RC imposes a number of restrictions on the C programming language. Most of

these are to allow the tracking of pointers necessary for accurate reference counting. A few

are due to the decision to output C code and compile this code with an existing C compiler.

We start with a summary of the restrictions, each restriction is then detailed in a separate

section:

• RC does not support threads.

• RC does not allow use of setjmp and longjmp.

• Pointer-typed objects may only contain valid pointers.

• Pointer-values cast to an integral type are not included in RC’s reference counts and

are not considered when deleting regions.

• Objects containing pointers may not be written byte-by-byte (i.e., via a char *

pointer). This typically affects memcpy and memset.

• malloc cannot be used to allocate objects containing pointers. Use calloc instead.

• Local variables may not shadow (i.e., have the same name as a local or global variable

in an enclosing scope) other variables. Tags (for struct, union, enum) may not shadow

enclosing tags either.

• For every type t which is (or contains) a union containing pointers, the programmer

must provide a function that adjusts the reference counts of regions referenced by

pointers in t.

• All local pointer variables are implicitly initialised to NULL (this is not a restriction

of course, but is a change from C).

Finally, the new type qualifiers, and the macros in regions.h, increase the set of

reserved words in C.

Threads

Efficient reference-counting in the presence of threads would require integration of

RC’s extensions (and knowledge of threads) into the C compiler. We have chosen not to sup-

33

port threads in RC. Chapter 4.4 discusses the implementation consequences of parallelism

on region reference-counting in detail.

setjmp and longjmp

As with threads, efficient reference-counting in the presence of setjmp and longjmp

would require integration of RC’s extensions into the C compiler (Chapter 4.3.3 discusses

how to implement setjmp and longjmp assuming compiler support). RC programs that use

setjmp and longjmp will find that the reference counts for regions may become incorrect.

Pointers and Integers

Pointer arithmetic is fully supported, but pointer-typed variables, fields, etc must

contain a valid pointer at all times. Casting an arbitrary integer to a pointer may cause

incorrect behaviour. But, assuming a large-enough integer type, a pointer can be cast to

integer and later back to a pointer with no problems. While stored as an integer, the pointer

value will not affect any reference counts. In the following code,

void f(void) deletes {

region r = newregion();

int *x = ralloc(r, int);

long y = (long)x;

deleteregion(r);

x = (int *)y;

}

the call to deleteregion will succeed as both r and x are not live when the call occurs.

The variable y is live but integers are ignored in reference counts.

Copying Objects with char * Pointers

Copying an object containing an unqualified pointer with byte-by-byte operations

will lead to incorrect reference counts. For instance:

void *x0, *x1;

char *y0 = (char &)&x0, *y1 = (char &)&x1;

int i;

for (i = 0; i < sizeof(void *); i++) y0[i] = y1[i];

34

is allowed in C, but not in RC.

Copying an object containing qualified pointers with byte-by-byte operations will

bypass the usual runtime check on assignment to these pointers.

Such copying is most often done with memcpy (or bcopy). Uses of memcpy should

be examined and can often by replaced with calls to rarraycopy. Similarly, uses of memset

(or bzero) should be examined and replaced if necessary.

malloc, realloc

If part of an application still wishes to use malloc-style allocation, any allocations

of objects containing unqualified pointers should use calloc instead. This is necessary

to guarantee that all pointer-typed fields, etc contain a valid pointer at all times. An

alternative (necessary for realloc) is to clear the newly allocated memory with memset.

See Appendix A for details.

union

For every type that is, or contains, a union with unqualified pointers, the RC

programmer must provide a function to correctly adjust the reference counts. This is

necessary as the RC compiler has no way of knowing which field of the union is currently

being used and therefore does not know if the pointer(s) in the union are valid or not.

For instance, in the type

struct intptr {

enum { an_int, a_ptr} kind;

union {

int i; /* valid if kind == an_int */

void *p; /* valid if kind == a_ptr */

} u;

int *stuff;

int *sameregion y;

double some_nonpointer_data;

};

the u union contains a pointer if and only if the kind field is a ptr. The stuff field is always

a valid pointer. To communicate this information to the RC compiler, the programmer must

provide the following function:

35

size_t rc_adjust_intptr(void *x, int by)

{

struct intptr *p = x;

RC_ADJUST_PREAMBLE;

if (p->kind == a_ptr)

RC_ADJUST(p->u.p, by);

RC_ADJUST(p->stuff, by);

/* No adjustment for p->y as it is sameregion */

return sizeof *p;

}

The rules for these rc adjust ... functions are as follows:

• If the program uses (assigns, allocates) a struct or union with tag tag type containing

a union with unqualified pointers then the programmer must write an rc adjust tag

function. A declaration for this function must precede the assignment or allocation

site.

• The skeleton of this function must be:

rc adjust tag (void *x, int by)

{

struct/union tag *p = x;

RC ADJUST PREAMBLE;

/* RC ADJUST statements go here */

return sizeof *p;

}

• There must be a statement RC ADJUST(f, by) for every valid unqualified pointer field

f that is part of the struct or union type tag.

Shadowing

If shadowing of local variables or tags were allowed, the C code generated by RC

might mistakenly refer to the wrong local variable. This could be fixed by renaming the

36

local variables in the output C code, but this would make source-level debugging unpleas-

ant. Therefore RC forbids all shadowing of global, parameter or local variables by other

parameter or local variables. Similarly, struct, union or enum tags cannot be redeclared

inside a function. For instance,

/* global */

int x;

struct a { int z; };

void f(double x /* error */)

{

struct a { double y; }; /* error */

{

void *x; /* an error (shadows both parameter and global) */

}

}

3.2.6 Linking to Existing Object Code

RC programs can call object code produced by a regular C compiler as long as

the following simple condition is met: the called code must not write any pointers to any

variable or section of memory that is also written by the RC program. Thus most C library

functions, such as printf, fopen, (generally only available as object code) can be called as

is.

Note that this rule allows the called C code to save a pointer it is passed in its own

memory and variables. However, these saved pointers will not be included in any region’s

reference count.

Appendix A summarises the compatibility rules for RC when calling the standard

C library.

3.2.7 Fallback to C

An RC program can be compiled with a regular C compiler as follows:

• The deletes, traditional. sameregion, parentptr qualifiers must be defined as

the empty string, e.g., by including the following options when compiling:

-Ddeletes= -Dtraditional= -Dsameregion= -Dparentptr=

37

• The regions.h supplied with RC’s distribution in the rc/libcompat directory be

included in every RC file. This can be accomplished with a #include <regions.h>

in every RC file, which will be redundant when compiling with RC’s compiler.

• The application must be linked with rc/libcompat/regions.c.

The RC compiler, written in RC, is itself compiled with a regular C compiler in

this way. See Makefile.in in RC’s distribution for a detailed example.

3.2.8 Debugging Support

RC programs can be debugged with source level debuggers with no restrictions.

There is also some support for tracking down references which prevent a region from being

deleted. Within the debugger, one can:

• Print a region’s reference count.

• Find the region of an arbitrary pointer.

• Scan memory to find pointers to a region r.

It is also possible to compile RC programs with reference counting from local

variables disabled. If the region can now be deleted, then the problematic references are in

local variables and can usually easily be found by examining the local variables in the call

stack.

3.2.9 Examples

This section shows some data and control structures for programs using regions.

These are mostly distilled from the benchmarks of Chapter 6.

Complex Data Structures

Some data structures must be represented by more than one object, even though

the various objects form one logical whole. In a region-based system, all these objects will

be allocated from the same region. In RC, the internal pointers for this data structure can

then be declared sameregion. For instance, a multi-precision fraction might look like:

38

struct fraction {

int numerator_length, denominator_length;

int *sameregion numerator, *sameregion denominator;

};

struct fraction *allocate_fraction(region r, int nl, int dl)

{

struct fraction *f = ralloc(r, struct fraction);

f->numerator_length = nl;

f->denominator_length = dl;

f->numerator = rarrayalloc(r, nl, int);

f->denominator = rarrayalloc(r, dl, int);

return f;

}

Circular Data Structures

Many data structures have cycles, e.g., because of pointers back from children to

parents. These can easily be accommodated with RC’s reference-counted regions as long

as the data structure as a whole is contained in a single region. For instance, a binary tree

with backwards pointers from child to parent looks like:

struct tree {

int data;

struct tree *sameregion left, *sameregion right;

struct tree *sameregion parent;

};

and elements can be added to an existing tree with the following function:

struct tree *add_left(struct tree *parent, int newdata) {

struct tree *new = ralloc(regionof(parent), struct tree);

new->data = newdata;

new->parent = parent;

parent->left = new;

return new;

}

Note also that as an element is being added to an existing data structure we can use

regionof to be sure of allocating the new element in the correct region. As all the pointers

39

stay within the same region, they are not included in the region’s reference count so the

tree’s region can be deleted without, e.g., clearing the parent pointers.

If a circular data structure spans two regions r1 and r2 then both regions can be

deleted simultaneously using deleteregion array without breaking the cycles.

Temporary Data Structures

A temporary data structure is often built out of pointers to a more permanent

data structure. For instance, we might want to make a list of the tree elements from the

previous example. We can use sub regions, and the parentptr type qualifier to enforce the

concept that this list is a “child” of the tree:

struct treelist {

struct treelist *sameregion next;

struct tree *parentptr element;

};

struct treelist *add_to_treelist(region r, struct tree *element,

struct treelist *next)

{

struct treelist *new = ralloc(r, struct treelist);

new->element = element;

new->next = next;

return new;

}

void process_tree(struct tree *t) deletes

{

region r = newsubregion(regionof(t)); /* region for treelist */

struct treelist *list = NULL;

while (element = pick_an_element_from(t))

list = add_to_treelist(r, element, list);

do_something_with(list);

deleteregion(r);

}

40

Note that process tree requires deletes as it deletes a region. While this exam-

ple is somewhat contrived, the RC compiler exhibits a more complex example of this idea:

it builds a temporary graph out of nodes from the abstract syntax tree representing the RC

program.

This example also illustrates a common control structure: a region (in this case r)

used to hold temporary data needed for some computation and which is deleted when that

computation is finished.

Phase-based Computations

Many programs can naturally divide their work into nearly independent pieces or

phases. For instance, a compiler mostly compiles a function at a time and needs to keep little

data between functions. Such a compiler can use the following region structure: a permanent

region that stores the data that must be kept between functions, and a per-function region

that stores all the data needed for compiling a single function. The per-function region is

created when the compilation of a function starts, and deleted when it ends:

region permanent;

void compile(void) deletes

{

permanent = newregion();

while (some functions remain) {

region per_function = newsubregion(permanent);

compile_next_function(per_function);

deleteregion(per_function);

}

deleteregion(permanent);

}

Note also the use of newsubregion to create the per-function region.

Iterative Computations

A slightly more complicated region control structure is found in many iterative

computations: the data at each stage depends on the results from the last few stages. This

41

situation often occurs in scientific computations. A similar structure to the one above can

be used, but the data for a particular step can only be deleted when no later stage needs

it. For instance, if each stage needs the data from the previous stage, the control structure

would look like:

void iterate_until(double end_time, double step)

{

double current_time = 0;

region last_region = NULL, current_region;

struct data *current, *last;

while (current_time < end_time) {

current_region = newregion();

current = compute_from(last);

last = current;

/* data from last (in last_region) not needed anymore */

if (last_region)

deleteregion(last_region);

last_region = current_region;

current_time += step;

}

/* do something with the result data in current */

/* and then... */

deleteregion(current_region);

if (last_region)

deleteregion(last_region);

}

3.3 Titanium

Titanium [64] is a language and system for high-performance parallel scientific

computing. Titanium uses Java [29] as its base, thereby leveraging the advantages of that

language. Titanium features a number of changes from Java; here we will only describe

Titanium’s region-based memory management.

Java uses garbage collection to reclaim unreachable storage. Titanium retains

this mechanism but also includes explicit region-based memory allocation, as shown in

Figure 3.5. Each iteration of the loop allocates a small array. The call r.delete() frees all

arrays.

42

class A {

void f() {

PrivateRegion r = new PrivateRegion();

for (int i = 0; i < 10; i++) {

int[] x = new (r) int[i + 1];

work(i, x);

}

try {

r.delete();

}

catch (RegionInUse oops) {

System.out.println("oops - failed to delete region");

}

}

void work(int i, int[] x) { }

}

Figure 3.5: An example of region-based allocation in Titanium.

Titanium’s region model is missing some of the features of RC (subregions, type

qualifiers), but these could easily be added. The major change in Titanium from RC

is the support for parallelism. We briefly summarise Titanium’s model of parallelism in

Chapter 3.3.1, then extend regions to deal with this model of parallelism in Chapter 3.3.2.

Chapter 3.3.3 shows that region-based allocation fits cleanly into Java’s syntax and seman-

tics. We end this section with a more elaborate example of region programming in Titanium

(Chapter 3.3.4).

3.3.1 Parallelism in Titanium

Titanium has an SPMD model of parallelism, rather than Java’s thread-based

parallelism: at program startup a fixed number n of processes are created which run in

parallel until the program completes. An important aspect of SPMD programming is global

operations: these operations must be executed by all processes. Barrier synchronisation is

an example of a global operation: the first n− 1 processes to execute the barrier synchroni-

sation statement wait until the nth process executes the barrier synchronisation statement.

Then all n processes resume execution:

43

for (int i = 0; i < 10; i++) {

// No process executes work1 in parallel with work2 as processes

// wait at the barrier until they have all finished work1 or

// work2 respectively.

work1();

Ti.barrier();

work2();

Ti.barrier();

}

On some platforms, e.g., networks of workstations, each process of a Titanium

program has its own local memory. Access to the local memory of other processes is still

possible (Titanium has a shared-memory programming model), but is much slower.

3.3.2 Shared and Private Regions

There are two kinds of regions in Titanium: shared regions and private regions.

Objects created in a shared region are called shared objects; all other objects are called

private objects. Garbage-collectible objects are taken to reside in an anonymous shared

region. It is an error to store a reference to a private object in a shared object. As a

consequence, it is impossible to obtain a private pointer created by another process.

The processes of a Titanium program may create and delete private regions in-

dependently. But creating and deleting shared regions are global operations. This makes

it easy to implement Titanium’s regions efficiently on machines where access to the local

memory of other processes is slow: each process can keep a separate reference count for a

region r. Deleting a region is safe if the sum of all these reference counts is zero, which

is easily checked as all processes must cooperate to delete a region. More details on this

implementation can be found in Chapter 4.4.

When creating a shared region, each process gets a separate object (in its local

memory) that represents the region. The object that represents the shared region created by

a process p is called the representative of that region in process p (see the Object.regionOf

method below). The objects allocated by a process p are always placed in p’s local memory.

While a program can be written solely with shared regions, the fact that creating

and deleting these regions is a global operation may be inconvenient when a process is

engaging in purely local computation. In that case it is easier to use private regions.

44

3.3.3 Region-Based Allocation in Titanium

Shared regions are represented as objects of the ti.lang.SharedRegion type,

private regions as objects of the ti.lang.PrivateRegion type. The signature of the types

is as follows:

package ti.lang;

final public class PrivateRegion extends Region {

public PrivateRegion() { }

public void delete() throws RegionInUse;

};

final public class SharedRegion extends Region {

public SharedRegion() { }

public void delete() throws RegionInUse;

};

abstract public class Region {

};

The following changes are made to Java (T is any type but ti.lang.PrivateRegion

and ti.lang.SharedRegion):

• new ti.lang.PrivateRegion() or new ti.lang.SharedRegion(): creates a region

containing only the object representing the region itself. Creating a SharedRegion is

a global operation and implies a barrier synchronisation.

• new T...: allocate a garbage-collected object, as in Java.

• new (expression) T... creates an object in the region specified by expression.

The static type of expression must be assignable to ti.lang.Region. At runtime

the value v of expression is evaluated. If v is:

– null: allocate a garbage-collected object, as in Java.

– an object of type ti.lang.PrivateRegion or ti.lang.SharedRegion: allocate

an object in region v.

– In all other cases a runtime error occurs.

45

• The delete method deletes a region. For SharedRegions, this is a global operation,

and implies a barrier synchronisation. A region is said to be externally referenced if

there is a reference to an object allocated in it that resides in

– A live local variable;

– A static field;

– A field of an object in another region.

The process of attempting to delete a region r proceeds as follows:

1. If r is externally referenced, throw a ti.lang.RegionInUse exception.

2. Run the finalize methods of all objects in r for which it has not been run.

3. If r is now externally referenced, throw a ti.lang.RegionInUse exception.

4. Free all the objects in r and delete r.

• The class java.lang.Object is extended with the following method:

public final ti.lang.Region regionOf();

This returns the region of the object, or null for garbage-collected objects. For shared

objects, the local representative of the shared region is returned.

Garbage-collected objects behave as in Java. In particular, deleting such objects

differs from the description above in that finalization does not wait for an explicit region

deletion.

3.3.4 Titanium Example

Figure 3.6 shows a more complex Titanium programming example, abstracted from

a gas dynamics code. The n Titanium processes call the doWork method simultaneously,

and create an array of Level structures. Each Level on each processor creates its own data

(in this simplified example this is just an array of doubles), but in a region shared across all

processors. The processes then call the Titanium array primitive exchange to get a pointer

to every other processor’s array (using numProcs method to get the value of n).

Each Level structure has its own region, this allows each Level’s data to be

deleted and recreated independently of the other levels by the refine method. The main

46

class Level {

SharedRegion myRegion;

double[] myData;

double[][] allData;

Level () {

myRegion = new SharedRegion();

myData = new (myRegion) double[100];

allData = new double[Ti.numProcs()][];

allData.exchange(myData);

}

void refine(Level[] allLevels, double current_time) {

SharedRegion oldRegion = myRegion;

int myself = Ti.thisProc();

myRegion = new SharedRegion();

double newData = new (myRegion) double[100];

// compute newData from allLevels, current_time and this level

...

/* and switch to newData */

myData = newData;

allData.exchange(myData);

try {

oldRegion.delete();

} catch (RegionInUse oops) { fail(); }

}

}

class LevelArray {

void doWork() { // executed by all processes in parallel

SharedRegion me = new SharedRegion();

Level[] allLevels = new (me) Level[4];

for (int i = 0; i < 4; i++)

allLevels[i] = new (me) Level();

for (double t = 0; t < end_of_the_universe; t += 1)

for (int i = 0; i < 4; i++)

allLevels[i].refine(allLevels, t);

}

}

Figure 3.6: A larger Titanium example

47

loop of doWork iterates over time and refines each level independently. Note that in this

program, the creation and deletion of the shared regions, and the calls to exchange are all

global operations.

3.4 RC Extensions

The design choices in C@, RC and Titanium are far from exhausting possible

variations in region-based memory management. Some of these possibilities have been

explored by others and are discussed in related work (Chapter 2). Here we discuss some of

the ideas we considered for RC, but did not implement. These ideas come in three groups:

alternative semantics for deleteregion (Chapter 3.4.1), more elaborate type annotations

(Chapter 3.4.2), and extensions to express locality (Chapter 3.4.3).

3.4.1 Alternative semantics for deleteregion

There are many possible semantics for deleting regions. They differ in how the

system knows when to delete a region, and what action the system takes when deleting a

region fails because there are remaining references to the region(s) being deleted.

The first choice is implicit region deletion: at regular intervals, the system checks

every region’s reference count and deletes those whose count is zero. This approach is most

similar to garbage collection, especially reference-count-based garbage collectors [60]. While

this check could be made at every pointer update (as in reference-count-based garbage-

collection), we think that this is too expensive. Instead, such a system could check for

regions with a zero reference count when it is running out of memory, or at every nth

memory allocation (this is closer to the approach of traditional mark-and-sweep or copying

collectors).

The choice taken in C@ and Titanium is to make deleteregion an explicit oper-

ation and return a failure indication if the region cannot be deleted. For instance, a library

routine could take a region for its temporary allocation and attempt to delete it before

returning.

In RC, we preferred to make deleteregion fail by aborting the program. We

found that this was the natural approach in all our benchmarks, and it allows migration to

a system with unchecked regions (one of our design goals for RC).

48

With subregions, an obvious extension is to delete child regions automatically

when their parent is deleted. The rules for reference counting should also be redefined to

not count references from a child, grandchild, . . . of r in r’s reference count. This allows

cycles, e.g., between a parent and a child as long as the child is not deleted before the

parent.

We did not choose to follow this approach in RC as it increases the overhead of ref-

erence counting (see the discussion of its implementation in Chapter 4.3.5 and the “xpp” re-

sults in Chapter 6.7.2). Instead, we provide a more general operation, deleteregion array,

that deletes an arbitrary group of regions, allowing cycles within this group. We can imple-

ment this operation with no additional overhead as long as failure of deleteregion array

aborts the program. See the discussion of the implementation of deleteregion array in

Chapter 4.3.1 for more details.

3.4.2 Further Type Annotations in RC

We considered adding a childptr annotation to RC to declare pointers that point

from a region r to an object in a descendant region. We did not incorporate this qualifier

as it would require both a runtime check and a reference-count update and would thus slow

programs down. However it can increase the number of parentptr qualifiers that can be

statically checked, as in the following code:

struct f {

struct g *childptr child;

} *a;

struct g {

struct f *parentptr parent;

};

a->child->parent = a;

With the childptr annotation, our qualifier-verification framework (see Chapter 5.6) can

verify this assignment and eliminate the runtime check. Without it, it cannot.

We also considered adding a way to specify that two pointers are linked, i.e., that

both always point to the same region. We saw a few instances of this pattern in our

benchmarks. We did not do so for several reasons:

• The syntax for this is not immediately obvious. A declaration of some variable or

field x could be followed by an annotation such as sameregionas(y) but what are

49

the rules for y ? Allowing an arbitrary expression would be confusing and hard to

analyse.

• Once the pointers have been set to some region r, they would both have to be set to

NULL before they could be changed to a different region r ′: the first update of one of

a pair of linked pointers will break the invariant that they point to the same region.

An analysis (or some special syntax) to detect consecutive updates of linked pointers

did not seem worthwhile.

• It is already possible to express this pattern using sameregion and a small change to

the code. For instance, if two global variables x and y are linked, the programmer can

instead write the following code:

struct xandy {

char *sameregion x, *sameregion y;

} *xandy;

/* when setting x and y’s value to some new region r */

xandy = ralloc(r, struct xandy);

xandy->x = rarrayalloc(r, 10, char);

xandy->y = rarrayalloc(r, 20, char);

/* when just modifying one of x or y */

xandy->x = rarrayalloc(regionof(xandy), 30, char);

In functions such as new rlist:

struct rlist {

struct rlist *sameregion next;

int i;

};

struct rlist *new_rlist(region r, struct rlist *next)

{

struct rlist *new = ralloc(r, ...);

new->next = next;

return new;

}

the programmer intends that the parameter next be NULL or in the same region as r. This

kind of requirement can be expressed with a function type qualifier such as

struct rlist *new_rlist(region r, struct rlist *next) sameregion(r, next)

50

This requires that both parameters be in the same region if both are not NULL. The compiler

will ensure either statically or through a runtime check that this requirement holds at every

call to new rlist. This pattern is common, e.g., it occurs frequently in the RC compiler.

It is not possible to eliminate the region parameter r and replace the allocation of the new

object with

rlist *new = ralloc(regionof(next), ...);

because next may be NULL.1 Another possible function annotation, parentptr(p, q), ex-

presses the fact that the p argument must be in an ancestor region of q.

A language designed from scratch to use regions could assume that by default

all pointers are sameregion and require parentptr or crossregion (points anywhere)

declarations when pointers point to other regions. The crossregion annotation would make

it explicit that assignments to such pointers are more expensive as they require a reference-

count operation. Local and global variables should probably be implicitly crossregion in

this model. Bacon et al’s Guava language [5], a dialect of Java that statically prevents data

races, has something of this flavour: Guava distinguishes monitors which can be referenced

from any thread and objects which can only be referenced from the thread that created

them. This is akin to having one region per thread and annotating all object references

with sameregion and all monitor references with crossregion.

3.4.3 Expressing Locality

As discussed in the introduction, and in Stoutamire’s dissertation [49], regions can

be used to express some locality properties. RC’s regions can also be used in this way,

and RC’s implementation places objects allocated in different regions in different pages of

memory. However, this can lead to placing objects that belong naturally (from the point of

view of object lifetime) in the same region into two (or more) regions. This then prevents

the use of our type qualifiers such as sameregion and forces the use of deleteregion array

to delete the two regions.

Instead, RC’s region model could be extended with areas: each region would have

a number of areas in which allocation can occur, but all areas of a region would be logically

in the region and would share a single reference count. The implementation would then

1In a new language it would be possible to have a separate null value for each region, which would allow
this idiom to work.

51

guarantee that objects allocated in separate areas would live in separate pages of memory.

This approach would separate the locality and lifetime aspects of regions.

52

Chapter 4

Implementation Techniques

Chapter 4.1 discuss the tradeoffs between compiling RC to C versus integrating

knowledge of regions into an existing compiler. This choice has little effect on the imple-

mentation of the region library (Chapter 4.2), but strongly influences the implementation

of reference counting (Chapter 4.3). It also restricts implementation choices for reference-

counted regions in parallel programming languages, including C-with-threads (Chapter 4.4).

At the end of this chapter, we show how reference-counted regions can be used for a safe,

real-time language (Chapter 4.5).

4.1 Compiling to C

The basic tradeoff is that compiling to C increases portability of the RC com-

piler, but reduces implementation options and hence performance. However, much of the

code necessary to implement RC can be expressed in C: the region library itself, the basic

reference count update operation on unqualified pointer writes and the runtime checks for

qualified pointer writes can all be written in C. The extensions to C available with the gcc1

compiler (global register variables, statement blocks in expressions) can optionally be used

to bring the performance of generating C code even closer to what could be obtained by

integrating RC into an existing C compiler and generating assembly code.

The main disadvantage of compiling to C is the lack of information on stack layout

and register usage. This prevents the RC compiler from scanning the stack for pointers

to regions in deleteregion as was done in C@. Chapters 4.3.3 and 4.3.4 contrast the

1http://gcc.gnu.org

53

approaches for handling reference counts from local variables in C@ and RC. Compiling

to C also restricts the options open to a reference-counted-region compiler for a parallel

language (Chapter 4.4.2).

4.2 Region Library

The region library must support the region API of Figure 3.4. To preserve com-

patibility with C, RC keeps the same data representation as C, including for pointers. The

implementation of reference counting, and of regionof, need to map a pointer to the re-

gion of the pointed object. Therefore the region library must maintain a data structure

that supports regionof. Beyond these basic requirements:

• Memory allocation and deallocation should be efficient, especially allocation of small

objects.

• The space overhead for regions should be low. This overhead has two sources: actual

overhead for regions and each object in a region, and losses due to internal and

external fragmentation [62].

• The region library should provide whatever support is necessary for efficient reference

counting.

• The library should be easy to port to a new platform or C compiler.

This led to the following three-level design: a region is built out of allocators; an

allocator can allocate arbitrary-sized objects, where each object can have an arbitrary-sized

header; allocators obtain blocks of memory from the page allocator. Each of these three

components is described in detail in the next sections.

4.2.1 Regions

A region, whose structure is shown in Figure 4.1, is composed of a reference count

and two allocators, the normal allocator for objects containing unqualified pointers, and the

pointerfree allocator for all other objects. When deleting a region, references from the

now dead region to other regions are removed by scanning all the objects allocated by the

normal allocator, using type information recorded when the objects were allocated. The

54

struct region {

int rc, id, nextid;

struct allocator normal;

struct allocator pointerfree;

struct region *parent, *sibling, *children;

};

Figure 4.1: Region structure

blocks of the pointerfree allocator need not be scanned as their pointers (all qualified)

are not included in any region’s reference count.

Objects allocated in the normal allocator have a header to allow implementation

of this scan operation: for non-array objects this is a pointer to the rc adjust x function

described in Chapter 3.2.5 (the RC compiler generates this function automatically for ob-

jects that do not contain pointers in unions). For array objects, this header is the array

size and a pointer to the rc adjust x function for the array element type.

Objects allocated in the pointerfree allocator do not have this header, except if

they are arrays allocated with rarrayextend (or typed arrayextend).

The parent, sibling and children fields store the region hierarchy: the parent

pointer points from a child to its parent region; the parent region points to its first child

with the children field; subsequent children can be found by following the sibling field

through each child. The last child has a NULL sibling field.

The id and nextid fields are a depth-first numbering of the region hierarchy,

which allows efficient implementation of runtime checks for the parentptr qualifier. This

numbering is recomputed every time a region is created. We have not investigated more

efficient approaches for computing this numbering as its overhead is not significant in our

benchmarks.

The region structure above is stored towards the beginning of the first 8kB block

of memory allocated for a region. Rather than place the region structure at offset 0 in

this block in all regions, we place the structure for the first region at offset 0, the second

at offset 64, the third at 128, etc. Without this offset, two region structures would most

likely conflict in a processor’s L1 cache (which is typically small—8kB-32kB) as all blocks

are aligned on 8kB boundaries. After reaching offset 1024, we restart at offset 0.

55

struct allocator {

struct block_allocator smallblock;

struct block_allocator superblock;

struct block *usedpages;

struct block *usedblocks;

};

struct block_allocator {

char *base, *allocfrom;

};

Figure 4.2: Allocator structure

4.2.2 Allocators

Allocators allocate memory to regions in blocks whose size is a multiple of the page

size (currently 8kB2) and which are aligned on a page-size boundary. An allocator, whose

structure is shown in Figure 4.2, allocates memory for most objects from two blocks:

• The smallblock is 8kB: objects up to 4kB in size (all sizes include the header size)

are allocated here.

• The superblock is 16kB: objects up to 8kB in size are allocated here.

Objects greater than 8kB are each allocated in a separate block. This scheme

guarantees that at most 50% of a block will be wasted due to internal fragmentation: for

objects up to 8kB, each object is limited to 50% of the size of it’s block, objects greater than

8kB will waste at most 8kB (as a block size must be a multiple of 8kB). We investigated a

similar scheme which guaranteed a maximum overhead of 25%, but found that in practice it

required slightly more memory because a region may need three simultaneous blocks which

are only very partially used.

Allocation in the smallblock and superblock blocks is sequential: the base

pointer points to the start of the block; the allocfrom pointer points to the first free byte

of the block. If the object and header fit in the space remaining at allocfrom, allocfrom

is incremented and a pointer to space for the object and header is returned to the region

library. If there is not enough space, a new block is obtained from the page allocator and

2This page size need not be the same as the system’s page size.

56

used for the allocation. Allocations that do not require a new block are constant time.

However, the region library must clear the memory before returning it to the user, therefore

most allocations take time linear in the size of the allocated object.

The usedpages pointer points to the list of 8kB blocks allocated by this allocator;

the usedblocks block points to all blocks greater than 8kB.

The smallblock and superblock are allocated on demand. The first block allo-

cated for a smallblock uses the 8kB page which was allocated to hold the region object.

Beyond internal fragmentation, there is some waste of memory due to the unused portions

of blocks and to external fragmentation in the page allocator. Chapter 6.6 details the space

usage and overheads of our allocation scheme on our benchmarks. In summary, memory

usage is similar to a good malloc/free implementation, except when all regions are small

(contain significantly less than 8kB). In this last case, we pay a significant cost (nearly 4x

more memory usage than malloc/free on one benchmark) for our relatively large pages and

separate normal and pointerfree allocators.

4.2.3 Page Allocator

The page allocator obtains memory from the system, allocates and frees blocks

of memory of sizes that are a multiple of 8kB pages, and maintains a map from pages to

regions (described in detail in the next section).

The problems faced by the page allocator are essentially the same as a general

purpose malloc and free implementation, except that allocations are less frequent and

the minimum object size is much larger (8kB rather than 8 or 16 bytes). Furthermore,

most allocations and frees are of 8kB blocks. The greatly increased allocation size makes

it possible to use a relatively large header on blocks without incurring significant memory

overhead.

Using the terminology of Wilson et al [62], the page allocator is a sequential best

fit allocator with coalescing, and special support for allocating/freeing 8kB blocks. The free

and allocated blocks of memory each start with the header of Figure 4.3. These headers

are used as follows:

• The allocator maintains two doubly-linked (via the next and previous fields) lists

of free blocks: single blocks is a list of free 8kB blocks; unused blocks is a list of

arbitrary-sized free blocks.

57

struct block

{

/* Next block in region or in free list */

struct block *next;

/* Doubly linked list of blocks sorted by address */

struct block *next_address, *prev_address;

/* number of pages in this allocation unit. */

unsigned int pagecount : PAGECOUNTBITS;

unsigned int free : 1;

/* Only in free blocks not in the single_blocks list */

struct block *previous;

};

Figure 4.3: Block header structure

• All blocks (free and in-use) are kept in a doubly-linked list sorted by address via the

next address and prev address fields.

• pagecount is the number of pages in a block.

• free is 1 iff this block is in the unused blocks list. Allocated blocks, and blocks in the

single blocks list have free == 0 to prevent them being coalesced with adjacent

free blocks.

• On a 32-bit system, this header takes 16 bytes out of every allocated block. At worst

(only 8kB blocks), this is an overhead of 0.2%.

The algorithm for allocating an 8kB block is:

1. If single blocks is NULL: allocate a number of 8kB pages approximately equal to

1/128th of current total memory usage (but always at least one page), and place

these individual 8kB blocks on the single blocks list.

2. Return the first block from the single blocks list and remove it from single blocks.

To free an 8kB block: if the pages on the single blocks list accounts for less than

1/64th of current total memory usage, add the block to the start of the single blocks list

58

(but we always allow at least two pages in single blocks). Otherwise free the block like

blocks greater than 8kB (see below).

To allocate a block of size n = m× 8kB with m ≥ 2 (the following algorithm is a

sequential best fit [62]): find the smallest block b in unused blocks list whose size is greater

or equal to n. If b is exactly n bytes, unlink b from the unused blocks list and return it.

Otherwise split b into two parts, and return the n byte part. If the unused blocks list does

not contain a block of size at least n, obtain an n byte page-aligned block b′ of memory

from the system (see below for details). Return b′.

To free a block b of size n (n greater than 8kB): if the previous and/or next blocks

in the sorted-by-address blocks are free (i.e., if their free field is 1), coalesce b with the

adjacent free blocks. Otherwise add b to the start of the unused blocks free list.

Our region library can obtain memory from the system either using mmap or

malloc. Using malloc is most portable, but has one disadvantage: we need to obtain

memory aligned on page-size boundaries. As this is not guaranteed by malloc, we must

request an extra 8kB with every allocation and align the returned pointer to an 8kB bound-

ary. To reduce the space overhead this entails, we always allocate at least one megabyte of

memory in every call to malloc. This limits wasted memory to less than 1%. The extra

memory is added to the start of the unused blocks list.

Using mmap has the advantage that we can simply request the amount of memory

we need, but is less portable. We do not use sbrk as it is not portable to non-Unix machines

and is likely to break the C library’s malloc implementation (malloc is required in RC for

correct interoperation with legacy C code).

4.2.4 Page Map

Each page belongs to one region. The page allocator maintains a region map from

pages to regions to allow efficient implementation of the regionof function of Figure 3.4

and of reference counting.

On a 32-bit system, this map is simply an array indexed by page number, i.e., the

address of a page divided by 8kB, to regions. This array has 232

8kB
= 219 entries and occupies

2 megabytes of virtual address space. Only the parts of this array that correspond to virtual

addresses that are actually used by the program are ever touched, so the actual amount of

RAM necessary for this region map is actually 4 bytes per 8kB page.

59

On a 64-bit system, this simple approach is not possible as, in a naïve approach,

the array would take 254 bytes of virtual address space. In fact, available 64-bit processors

do not implement a full 64-bit address space. Instead, they constrain the top c bits of an

address to be equal to the (c + 1)th bit. For instance, in the Alpha 21264, c = 16 or 21 [17,

p1-2]. But even with c = 21, the array would take 233 bytes. We have considered two

approaches for such systems:

• A two-level region map: the 51-bit page number is split into three sections of c, a

and b bits respectively, with c + a + b = 51. The upper c bits of the page number

can be ignored. A statically allocated 2a element array points to 2b element arrays

of pointers to regions. The 2b element arrays are allocated as necessary. This is the

approach taken in Titanium [64] on 64-bit platforms, with c = 15, a = b = 18.

• The two-level map increases the cost of reference counting by requiring an extra

memory access and a few extra arithmetic operations. These could be avoided by

reserving, but not allocating, 8 × 251−c bytes of virtual address space for the region

map array. Only the parts of this array that are actually needed are then allocated,

e.g., using the mmap system call. This approach requires cooperation with the page

allocator and malloc to ensure that the reserved part of the address space is not used.

We have not implemented this approach.

On some machines it is possible to allocate address space without reserving virtual

memory until the first access to an operating system page, e.g., on Solaris using the

MAP NORESERVE flag with mmap. This would make this second approach very easy to

implement.

4.3 Reference Counting

Reference count updates may occur on any pointer assignment3 and when a region

is deleted (Chapter 4.3.1). Allocation and deallocation occur only once, but a pointer may

be assigned many times. The straightforward implementation of reference count updates

for pointer assignment (Figure 4.4(a)) takes 23 SPARC [58] instructions, 4 so maintaining

reference counts is potentially very expensive. Most pointer assignments are updates of
3Copies of structured types containing pointers can be viewed as copying each field individually.
4On SPARC, the RC implementation keeps the page map in a global register using gcc’s global register

variables.

60

(a) Reference count update for *p = newval

23 SPARC instructions

oldval = *p;

*p = newval;

if (regionof(oldval) != regionof(newval)) {
if (regionof(oldval) != regionof(p))

regionof(oldval)->rc−−;
if (regionof(newval) != regionof(p))

regionof(newval)->rc++;

}

(b) Annotation runtime checks for *p = newval

sameregion:
*p = newval;

if (newval && regionof(newval) != regionof(p))

abort();

parentptr :
*p = newval;

rn = regionof(newval); rp = regionof(p);

if (newval && !(rp->id >= rn->id && rp->id < rn->nextid))

abort();

traditional :
*p = newval;

if (newval && regionof(newval) != traditional region)

abort();

Figure 4.4: Reference counting and annotation checking

local variables. RC and C@ take different approaches to reducing the cost of assignments

to local variables (Chapter 4.3.2). The type qualifiers of Chapter 3.2.4 also reduce the cost

of reference counting: assignments to sameregion, parentptr and traditional pointers

only need one of the runtime checks of Figure 4.4(b) rather than a reference count update.

These checks take between 7 and 15 SPARC instructions and do not need to read the value

being overwritten. Chapter 5.6 discusses how we eliminate a significant fraction of these

runtime checks. The runtime check for parentptr relies on the depth-first numbering of

the region hierarchy discussed in Chapter 4.2.1.

With RC’s technique for handling local variables, and using the naïve reference

counting operation of Figure 4.4(a) for writes to unqualified pointers, the cost of reference

counting is low: 12.6% or less on our benchmarks (see Chapter 6.7.3). Chapter 4.3.5 dis-

61

cusses some alternate implementations of reference-counting we have investigated to further

reduce this overhead.

4.3.1 Deleting Regions

As discussed above, deleting a region removes references from the now dead region

to other regions by scanning all the objects in the region, using the rc adjust x functions

recorded when the objects were allocated. Pseudo-code for this operation is given in Fig-

ure 4.5. This pseudo-code uses alignof(t) to return the alignment needed for type t and

assumes that double is the C type with maximal alignment. Also ALIGN aligns a pointer

to the specified alignment. We have found that the cost of this scan operation remains

reasonable (2% or less on all benchmarks).

To delete a group of regions with deleteregion array, the region library simply

removes all the references from the regions being deleted as in Figure 4.5. It then checks

that all the regions being deleted have a zero reference count, and aborts the program if not.

Thus cycles between the regions being deleted will be removed from the region’s reference

counts before the check and will thus not prevent the regions from being deleted. This

implementation imposes no overhead over deleting each region individually. However, if we

wished to have deleteregion array return a failure code when it cannot delete all the

regions, we would have to rescan the deleted regions to re-increment the appropriate region

reference counts. Under this model, calls to deleteregion array that failed would be very

slow.

The alternate approach to reference counting discussed in Chapter 4.3.7 avoids the

need for the region scan and allows for an efficient implementation of deleteregion array

that returns a failure code, but does not extend well to large numbers of regions.

4.3.2 Reference Counting for Local Variables

If a local variable has its address taken, we treat it like a global variable, i.e., we

use the pseudo-code of Figure 4.4(a) on assignments to these variables. This is necessary as

local variables whose address is taken may also be updated indirectly (via the pointer value

returned when the variable’s address was taken). In the next two sections we will ignore

these variables and will use “local variable” to mean “local variable whose address is not

taken”.

62

struct block *b;

for all blocks b of region r’s normal allocator {

char *deleting, *end;

deleting = &b->previous;

end = (char *)b + b->pagecount * 8192;

while (1) {

deleting = ALIGN(deleting, alignof(type_t));

if (deleting >= end)

break;

type_t cln = *(type_t *)deleting;

/* the end of unfilled blocks is marked with a NULL */

if (!cln)

break;

deleting = ALIGN(deleting + sizeof(type_t), alignof(double));

deleting += cln(deleting, -1);

}

}

Figure 4.5: Region scan during deleteregion(r).

The reference count of a region need only be correct when deleteregion is called;

at all other times we need only maintain enough information to compute this reference

count We use this basic observation to implement two different forms of deferred reference

counting [22] in C@ (Chapter 4.3.3) and RC (Chapter 4.3.4) which allow us to greatly

reduce the cost of assignments to local variables whose address is not taken. Both of these

approaches have effects on setjmp and longjmp and, if used in implementing reference

counting for other languages (e.g., Java), on exception handling. These effects are addressed

below.

4.3.3 Local Variable Reference Counts in C@

The C@ compiler saves the runtime stack layout for the region runtime system’s

use. The compiler records at each function call site the set of registers and offsets in the

current call frame that contain live local region pointers. Because our implementation of

C@ is based on lcc [24], which does not have liveness information available, our prototype

63

considers all variables in scope to be live. The liveness information is static data whose

location is recorded in the unused bits of a NOP instruction at the call site (A more complex

implementation would avoid this extra instruction.)

We considered two implementations of local variable reference counting in this

context: no stack references and lazy stack scanning. Our implementation of C@ uses lazy

stack scanning.

No Stack References

In this approach, the reference count stored with a region excludes the references

from local variables whose address is not taken. When deleting region r, the stack is scanned

using the recorded stack layout information to see if there are live references to r. If so,

deleting r fails.

The setjmp and longjmp C library functions can be implemented if the compiler

also records the offsets in each stack frame of local region pointer variables whose address

is taken. The implementation of longjmp must decrement the reference counts of regions

pointed to by such local variables for all the frames jumped over by the longjmp call.

Similar techniques apply for exception handling implementations. Note that if the language

with exception handling does not allow the address of local variables to be taken, then

the exception handling implementation can just ignore the issue of references from local

variables.

Lazy Stack Scanning

With lazy stack scanning, the actual reference count stored with a region is the

region’s reference count excluding references from live variables in all active call frames

below the high water mark on the stack (note the stack grows downward on the SPARC).

The high water mark is just a location on the stack, with some frames above and some

below. Our system maintains the following invariant:

(∗) The number of frames below the high-water mark is always at least one.

Thus writes to local variables never update reference counts.

When deleteregion(r) requires the exact reference count of r it scans the portion

of the stack below the high water mark and updates the region reference counts. At that

64

point the actual and normal reference counts are equal. The stack scan sets the high water

mark above the frame of deleteregion, which is not itself scanned.

Invariant (∗) is maintained by a procedure call, but some work may be required on

procedure return. If control returns to a call frame at the high-water mark, then the region

reference counts attributable to local variables are decremented and the high water mark

is adjusted above the call frame. This is achieved by modifying return addresses during

the scan to point to a special unscan function that decrements the region reference counts,

adjusts the high water mark above the call frame, and then jumps to the original return

address.

The implementation of setjmp and longjmp is nearly the same as with the no stack

references approach, except that longjmp has to be made aware of the high-water mark and

must unscan any frames necessary to maintain the (∗) invariant. Similar techniques apply

for exception handling implementations.

4.3.4 Local Variable Reference Counts in RC

As we are compiling RC to C we cannot use C@’s approach and have deleteregion

scan the stack for pointers to regions from local variables. Instead we place operations to

increment and decrement the reference counts of regions referred to from local variables

in positions that guarantee that the reference count is correct when calling deleteregion

but that allows the count to be incorrect at other times. We investigated three placement

schemes. For each scheme, we will write incrc(v) and decrc(v) for the operation that

increments or decrements the reference count of the region referred to by local pointer

variable v:

• Assignment : in functions that might call deleteregion, for each variable v, we add

an incrc(v) operation when v goes dead to live on a control-flow-graph edge and a

decrc(v) operation when v goes from live to dead on a control-flow-graph edge. This

has the effect of wrapping each assignment to v in a decrc(v) and incrc(v) pair and

is very similar to the usual reference counting rules.

• Function: before every call to a function that might call deleteregion we add an

incrc(v) for every live variable v. After every such call we add a decrc(v) operation.

• Optimal : we place the incrc(v) and decrc(v) operations so as to minimise the number

65

of operations executed while maintaining the invariant that the reference counts of

regions are correct at all calls to functions that might call deleteregion. The details

are found below.

For all these approaches, RC needs to know which functions may delete a region.

While this information is easily derived using a simple whole-program analysis, we sought

to maintain separate compilation of source files in RC. Therefore RC requires that the

programmer add a deletes keyword to each function that may delete a region. This

annotation is part of the function’s type.

These approaches have one drawback: it is hard to implement setjmp and longjmp.

There are two problems:

• The call to longjmp must decrement the references from local pointer variables whose

address is taken in the stack frames that are jumped over.

• If the setjmp targeted by a call to longjmp occurs in a function that may delete a

region, then some live local pointer variables v in frames between the target setjmp

and the longjmp call will have been included into some region’s reference count with

an incrc operation. These region reference counts must be adjusted by the longjmp

call.

A satisfactory implementation of setjmp and longjmp appears to require compiler

support in the style of C@ (Chapter 4.3.3). RC does not support setjmp and longjmp.

Minimising Local Variable Reference Counting

Our optimal scheme for reference counting local variables is based on the following

observation. For each local variable v (that contains a pointer), the statements of a function

f can be divided into three sets:

• S: The statements where the reference counts must take v into account. The variable

v is said to be counted. These statements are all calls to functions that may delete a

region.

• U : The statements where the reference counts must not take v into account. The

variable is said to be uncounted. These statements are assignments to v and all points

where v is dead.

66

• O: All other statements.

The incrc operation changes variable v from uncounted to counted. A decrc

operation changes variable v from counted to uncounted.

By assigning every statement in O to either S or U , the places where incrc and

decrc operations must be inserted are completely determined. To maximise performance,

an assignment of statements to S and U must be chosen that minimises the total time

spent in incrc and decrc operations. We show how to compute the optimal assignment

under the assumption that all incrc and decrc operations take the same time, and given

an execution frequency profile.

Formally, each function f has an edge-weighted control-flow graph G = (V,E,W)

and variables v1, v2, . . . , vn. The edge weights correspond to execution frequencies. The

sum of the weights on all incoming edges to a node n must be equal to the sum of the

outgoing weights for all nodes n except the entry and exit of f .

Each local variable vi is considered independently. Each node n of G is assigned

an initial colour:

• white: if vi must be counted at n.

• black : if vi must be uncounted at n.

• grey : all other nodes.

Minimising reference counting then becomes equivalent to assigning the colour

white or black to each grey node so as to minimise the sum of weights between white and

black nodes in the resulting coloured graph (an incrc or decrc operation must be inserted

on every edge between black and white nodes).

To find this minimum, we first note that the solution will be unchanged if we

collapse the graph G = (V,E,W) into a graph G′ = (V ′, E′,W ′) as follows:

• V ′ = {v|v ∈ V ∧ v is a grey node} ∪ {sb, sw} where sb represents all black nodes, and

sw represents all white nodes.

• E′,W ′ are the obvious edges and weights obtained when merging the black (white)

nodes of G into sb (sw): multiple edges between the same pairs of nodes are merged

into a single edge with weights summed.

67

An optimal assignment of white and black nodes for G′ is the same as a partition of

G′ into two graphs, with sb and sw separated, which minimises the weight of the cut edges.

In other words, the optimal assignment is a minimum cut of G′ viewed as an undirected

graph and with sb, sw separated by the cut. This minimum cut can be found by finding the

maximum flow [18] on G′ (viewed as an undirected graph) with source sw and sink sb. The

actual cut is found by disconnecting all edges saturated in the maximum flow. All nodes

reachable from sb are black, all other nodes are white.

There is an O(|V ′||E′| log(|V ′|2/|E′|)) algorithm for maximum flow [28]. In control-

flow graphs |E| ≤ 2|V |, so for our problem the complexity is O(|V |2). A separate minimum

cut problem must be solved for each local variable, so the total complexity is O(|V |3)

(assuming the number of local variables is proportional to the function size).

Implementation

We use a simple static estimate (loops executed ten times, if’s split 50/50) to get

an execution profile for the control-flow graph.

Our implementation uses a cubic time minimum cut algorithm, giving a worst case

complexity of O(|V |4) where |V | is function size. However the optimal placement of incrc

and decrc operations is found in less than a few seconds on all but one function. This

one exception takes 77s, however the subsequent compilation in gcc (with optimisation on)

takes 182s. For this early version of RC it did not appear worthwhile to implement a faster

minimum cut algorithm.

4.3.5 Alternate Reference Counting Implementations

We have considered two basic kinds of reference counting: our default choice, used

in the rest of this dissertation, is to define a region r’s reference count as the number of

pointers to objects in r from outside r (see Chapter 3.2). We discuss variations on this

standard approach in Chapter 4.3.6. A second approach is to define the reference count

between regions a and b as the number of pointers to objects in b from objects in region

a. Chapter 4.3.7 discusses the advantages and disadvantages of this approach, and several

possible implementations.

The RC compiler has flags that allow the user to choose between these different

approaches.

68

(a) Reference count update for *p = newval

14 SPARC instructions

oldval = *p;

*p = newval;

regionof(oldval)->rc−−;
regionof(newval)->rc++;

(b) Page-based reference count update for *p = newval

12 SPARC instructions

oldval = *p;

*p = newval;

pagerc(oldval)−−;
pagerc(newval)++;

Figure 4.6: Reference counting including same-region references.

4.3.6 Variations on Standard Reference Counting

All these approaches require that deleteregion perform the region scan of Fig-

ure 4.5, and the associated space overhead to store the rc adjust x functions.

We consider two independent variations on the standard reference counting scheme:

include same-region references and excluding parent pointers.

Include Same-Region References

The reference count update code of Figure 4.4(a) spends a lot of effort to avoid

counting references that stay within a region. A radical change is to include all references

in a region’s rc field, and to use the region scan that occurs in deleteregion (Figure 4.5)

to compute the region’s reference count. This leads to the pseudo-code for reference count

update of Figure 4.6(a).

A further simplification of the reference count update code (which avoids 2 load

instructions) is shown in Figure 4.6(b): a separate reference count is kept for each 8kB page

of each region. A region can be safely deleted if, after the deleteregion region scan all

pages have a 0 reference count.

Performance results for these approaches are found in Chapter 6.7.2.

69

Reference count update for *p = newval

35 SPARC instructions

oldval = *p;

*p = newval;

if (regionof(oldval) != regionof(newval)) {
if (!childof(regionof(p), regionof(oldval)))

regionof(oldval)->rc−−;
if (!childof(regionof(p), regionof(newval)))

regionof(newval)->rc++;

}

int childof(region r, region of)

{
return r->rid >= of->rid && r->rid < of->nextid;

}

Figure 4.7: Reference counting excluding parent pointers

Excluding Parent Pointers

The standard reference count definition includes pointers from r’s descendants in

r’s reference count. At the cost of the more complex reference count sequence of Figure 4.7

we can exclude these pointers. With this approach, the check that a region and all its

descendants can be deleted is simply that all these regions have a zero reference count.

Chapter 6.7.2 summarises the performance of this approach.

4.3.7 Reference Counts Between Pairs of Regions

In this section, we will write RC(a, b) for the reference count between regions a

and b (the number of pointers to objects in region b from objects in region a). We use the

term RC-pairs for our implementation of regions that keeps a count of references between

pairs of regions rather than the count of references to each region.

Keeping reference counts between pairs of regions has the following tradeoffs:

• Deleting a region becomes much simpler and faster than in the standard approach.

There is no need for the region scan of Figure 4.5. Instead, the pseudo-code for

deleting region r is simply:

70

for all regions a

if (RC(a, r) != 0) abort();

free all blocks of r

When a region r is created, it is also necessary to initialise RC(a, r) to zero for all

regions a.

• Deleting a group of regions is equally simple: the same code as above is used, except

that the reference count between two regions being deleted is ignored.

• Because there is no need for the region scan, there is no need to save type information

with regions. This saves space for each object allocated It also allows all allocations to

use the pointerfree allocator, which can save up to 24kB per region (one smallblock

and superblock block).

• The code for reference count updates, shown in Figure 4.8(a), becomes more compli-

cated (and hence slower). Thus the performance of reference counts between pairs of

regions relative to the standard reference count is not immediately obvious: it will

depend on the number of times each pointer in a region is updated. We can also follow

the “include same-region references” approach, this gives the reference count update

code of Figure 4.8(b). In this last case, the check for deleting region r should ignore

the value of RC(r, r). The exact cost of these reference count updates depends on the

representation of RC(a, b), and is discussed further below.

• The biggest problem with reference counts between pairs of regions is that the obvious

implementations of RC(a, b) is some form of array indexed by a unique identifier for

a and b. This array will need 4n2 bytes to store the reference counts for n regions,

rather than the 4n bytes of the standard approach. While this is not an issue for

small numbers of regions (up to a few hundred) it does make it impossible to have

more than a few thousand simultaneous regions.

A sparse array representation for RC(a, b) is possible and would save a lot of space

in programs with many regions. In such programs, each region is unlikely to have

pointers to more than a small fraction of the other regions. However, the reference

count update code will then become much bigger and slower. We did not investigate

this approach as we did not think it would be useful. Also, all our benchmarks run

with few simultaneous regions (less than 32).

71

(a) Reference count update for *p = newval

oldval = *p;

*p = newval;

if (regionof(oldval) != regionof(newval)) {
if (regionof(oldval) != regionof(p))

RC(regionof(p), regionof(oldval))--;

if (regionof(newval) != regionof(p))

RC(regionof(p), regionof(newval))++;

}

(b) Reference count update for *p = newval

oldval = *p;

*p = newval;

RC(regionof(p), regionof(oldval))--;

RC(regionof(p), regionof(newval))++;

Figure 4.8: Reference counting for reference counts between pairs of regions

We considered, but did not implement, a version of reference counts between pairs of

regions that degenerates into the standard approach when more than some number

M of regions exist simultaneously: regions created while there are M or more simul-

taneously existing regions are called extra regions. The reference count between pairs

of regions RC(a, b) does not exist if either a or b is an extra region. Instead there

is a reference count RCextra(r) that counts references to region r (extra or normal)

from extra regions. Extra regions need the same type information as in the standard

approach. A region r cannot be deleted if RCextra(r) is not zero.

The RC compiler gives the user a choice between two different implementations

of RC(a, b). Both restrict the user to a maximum number of regions M (currently 32,

but easily changed). Both approaches identify a region r by a number between 0 and

M − 1. This identifier, written r->id below is different from the rid field of a region’s

depth-first numbering. The flat array approach is to use a flat array indexed by a->id

and b->id. The split array approach gives each region a field rc which is an array of M

reference counts and stores RC(a, b) as b->rc[a->id]. The reference count update costs

for Figure 4.8(a) are respectively 27 and 33 SPARC instructions for the first and second

approach, for Figure 4.8(b) they are respectively 18 and 24 SPARC instructions. Chapter 6.6

shows that reference counts between pairs of regions uses somewhat less memory than the

72

standard approach on our benchmarks (which have at most 25 simultaneously-live regions)

and that performance is similar (Chapter 6.7.2).

Both of these approaches can be extended to allow the limit M on the number

of regions to be increased at runtime, with slightly higher runtime cost. The array can be

resized when the number of regions increases beyond M . This requires an extra memory

read to find the current value of M in each reference count update. Alternately, a register

can be dedicated to holding the value of M . In the second approach, the rc field becomes

a pointer to an array of M reference counts. These arrays can then to be reallocated when

M increases. This adds an extra memory read to obtain the value of rc on each reference

count update.

4.4 Parallelism

While RC’s implementation does not support threads for reasons that are discussed

below, reference-counted regions can be implemented in a parallel language without undue

difficulty. This section starts by giving a general overview of parallel reference-counted

region implementation techniques. We then discuss how three different kinds of regions

can be created and deleted in a parallel setting: private regions, shared regions with global

creation and deletion and shared regions with independent creation and deletion. Titanium

(Chapter 3.3) has private regions and shared regions with global creation and deletion.

In the rest of this section, we will assume a parallel language with a shared-

memory programming model. We will use the word thread to represent a thread of control

in the parallel program. With this terminology, Titanium’s processes are threads. Note

that such a language can be implemented on machine’s without shared memory (e.g., some

implementations of Titanium run on uniprocessor machines connected by a network). In

the discussion below, we will assume that the parallel program runs on a number of local

memories. In the network example, each thread has a separate local memory. The opposite

extreme is a single local memory for all threads, as when a parallel program runs on a

single SMP machine. When two or more threads use the same local memory we say that

the memory is shared. A thread can only perform hardware reads or writes to its local

memory, access to another local memory m is mediated by one of m’s thread’s.

73

4.4.1 Parallel Region Implementation

We address the two main issues of region implementation: memory allocation and

reference counting.

Memory Allocation

The region implementation of Chapter 4.2 can handle allocation by several threads

in a near-independent fashion by giving each thread separate allocators. Each local memory

has a single page allocator which is responsible for allocating and freeing the blocks for each

thread’s allocators. When more than one thread shares a local memory this page allocator

will need to use locking to avoid corrupting its local data structures, but most object

allocations do not lead to calls to the page allocator so the locking overhead is low.

Reference Counting

If we follow the reference count update techniques of Chapter 4.3, reference count

updates must be protected by a lock/unlock operation. We believe that this approach is

too expensive.

Instead, each thread has a separate reference count for each region. The region’s

reference count is the sum of all these thread reference counts. Note that the reference

count in a single thread may be negative if that thread destroys references created by

another thread. We saw above that each thread also has its own allocators. Thus it makes

sense to give each thread t a separate region object with separate reference counts and

allocators. We call this region object the representative of the region for t. All these region

objects are tied together by giving them the same unique identifier, distinct from that of

other regions. If the parallel language has subregions, we can reuse the id or nextid fields

of the region structure for this purpose (Chapter 4.2.1).

The regionof function is then changed to return the representative of the region

in the current thread, rather than the thread itself, and the reference count code of Fig-

ure 4.4(a) can be used nearly unchanged. But there is still a problem when several threads

share a local memory: consider the following code:

Thread 1 Thread 2

q = new T();

o->ptr = q;

o->ptr = NULL; o->ptr = NULL;

74

(a) Reference count update for *p = newval

oldval = newval;

swap (*p, oldval);

if (regionof(oldval) != regionof(newval)) {
if (regionof(oldval) != regionof(p))

regionof(oldval)->rc−−;
if (regionof(newval) != regionof(p))

regionof(newval)->rc++;

}

Figure 4.9: Reference counting in a parallel language

and assume that o has the same value in both threads, and that the two assignments to

NULL are executed at nearly the same time. It is then possible for both thread 1 and 2 to

get oldval == q in the reference count update code of Figure 4.4(a). Then the reference

count of the region of q will be decremented twice, rather than once. To avoid this problem

we have to use an atomic swap operation to update *p. The new reference count code is

shown in Figure 4.9.

The atomic swap is more expensive than a load and store. Chapter 6.11 gives the

cost of replacing pointer updates by atomic swaps on our collection of benchmarks.

4.4.2 Creating and Deleting Regions

We consider the implementation of three different kinds of regions. A private region

r is created by a thread t and only allows t to allocate objects in r, and does not allow reads

or writes of objects in r by threads other than t. A shared region with global creation and

deletion does not have any access or allocation restrictions, but all threads must cooperate

in creation and deletion of the region. Finally, a shared regions with independent creation

and deletion has no restrictions: such a region can be created or deleted by any thread at

any time.

Private Regions

A private region r and its contents are not accessible to threads other than its

creator t. Therefore r has a single reference count, and creation and deletion of r can be

handled in the same way as the non-parallel case.

75

If the language with parallel threads also supports some form of shared region (or

other ways of sharing memory), then it is necessary to enforce the restriction that private

regions and their objects are not accessible to other threads. In Titanium, this is enforced

by a runtime check that no pointer to an object of a private region is stored in an object

of a shared region. An alternate approach is to use static type checking that distinguishes

private and shared objects and prevents access to private objects from other threads. See

Liblit’s work [38] for details on one such type system.

Shared Region with Global Creation and Deletion

For this type of region, the code executed by each thread must include an explicit

call to an operation to create or delete the region (see Chapter 3.3.4 for an example of this

style in Titanium).

It is thus easy for all threads to agree on a unique identifier for the region when it

is created and for each thread to immediately create its representative for the region. When

a region is deleted, all the regions can perform a parallel sum to find the reference count of

the region. If this sum is non-zero, the region deletion fails.

As the points where a region is deleted are explicitly visible in the source code

it is easy to implement either of the deferred reference counting techniques discussed in

Chapter 4.3.2.

Shared Regions with Independent Creation and Deletion

These regions are essentially unrestricted: at any time, a thread can create a

region. Later, the same or another thread can decide to delete this region without any

explicit operations in the code of any other thread. Region creation remains straightforward

in this model: the thread creating the region creates the representative of the region for all

other threads, and ensure that the region gets a unique identifier.

When a thread t wants to delete region r it must stop the other threads as they

may be updating their reference count for r. The technique used to stop the other threads

also interacts with the implementation of deferred reference counting for local variables

(Chapter 4.3.2). The two techniques we discuss here for stopping other threads are also

used by parallel garbage collectors:

• The other threads can be stopped using operating system facilities. Then a thread t ′

76

might be in the middle of a reference count update that concerns region r. If the com-

piler records stack layout information to allow deferred reference counting of local vari-

ables in the style of C@ (Chapter 4.3.3), then this information can easily be extended

to preserve safety of reference counting in the presence of threads: the local variable

newval must be considered live until the end of the regionof(newval)->rc++ state-

ment of Figure 4.4(a). Also, information on local variables must be available for every

instruction rather than just at function call sites. Stichnoth et al [48] report a space

overhead of 20% for a Java compiler which records such information.

This technique is not compatible with deferred reference counting local variables in the

style of RC (Chapter 4.3.4) as we cannot know what code another thread is currently

executing.

• The program’s generated code can include explicit safe points, i.e., points at which it

is safe to stop a thread. These points would not be placed inside a reference count

update. At each safe point, a thread checks to see if another thread has requested

that it be stopped. This has the advantage that the information on local variables

takes less space. Tarditi [54] reports a space overhead of 3.6% for such a scheme, but

does not give the cost in execution time of the safe point checks. However, in his

dissertation [53, p52] Tarditi did report a cost of 4-6% for the safe point checks used

in the SML/NJ compiler [2].

With this approach, both RC or C@’s deferred reference counting techniques can be

used. We did not implement thread support in RC because of the increased complexity,

and because we have no region-based multithreaded C benchmarks.

4.5 Real-Time Regions

We believe that reference-counted regions are suitable for use in a safe, real-time

language, though RC does not attempt to be real-time. All time costs incurred with

reference-counted regions are predictable, assuming an underlying unsafe real-time region

library (e.g., an implementation similar to the LTMemory class of Real-Time Java [14]):

• Region creation: an extra constant overhead over the underlying region library is

needed to initialise the region’s reference count to zero.

77

• Object allocation: objects must be cleared, which takes time linear in the allocated

object size.

• Region destruction: in addition to the underlying unsafe region time, we must check

the reference count (constant time) and scan the deleted region to remove references

to other regions. This last operation takes time linear in the size of the region, and is

therefore predictable.

• Reference-count updates (local variables): the runtime costs of both the Function

and Assignment schemes of Chapter 4.3.2 for reference-counting local variables are

predictable. For Assignment, all assignments to local variables in functions that might

delete a region incur a constant overhead. For Function, all calls to functions that

might delete a region incur an overhead proportional to the number of live local

pointer variables. In both cases, an explicit deletes qualifier makes reasoning easier

by making it obvious which functions might delete regions.

The Optimal scheme is inappropriate for real-time use as it’s results are not obvious

without running the min-cut algorithm, and may change unpredictably following small

code changes.

• Reference-count updates (all other writes): the reference-count updates for other

writes add a constant cost to pointer writes.

• Qualifier runtime checks: these also add a constant cost to pointer writes. While the

qualifier-runtime-check-elimination system of Chapter 5.6 could be used in a real-time

context, it should probably not be relied on as small changes to an application can

cause checks to be eliminated or retained. This system could be used in a setting

where compile-time errors are reported when runtime checks cannot be eliminated.

78

Chapter 5

rlang

We have designed rlang, a simple C-like language with a region type system to

formalise the concepts behind RC’s annotations. These annotations can then viewed as a

simple way for the user to specify the more complex rlang types.

We first present rlang’s type system (Chapter 5.1), then rlang and its type checking

rules (Chapter 5.2). Next we give a simple semantics for rlang (Chapter 5.3) and use it to

show the soundness of our type checking rules (Chapters 5.4 and 5.5).

We show how to build an analysis, based on translating RC programs to rlang,

that statically verifies the correctness of some assignments to annotated RC types and thus

reduces the runtime cost of safety in RC programs (Chapter 5.6). We end with a discussion

of alternate translations of RC to rlang, e.g., to incorporate the language extensions of

Chapter 3.4.

5.1 rlang Types

We first define a simple model for the heap of a region-based language. The heap H

is divided into regions, each containing a number of objects. Objects are named structures

with named fields containing pointers. Pointers can be null, point to objects, or to regions.

We write AH = {>, r1, . . . , rn} for the set of regions of H. We define a partial order on AH :

r′ � r if r′ is a subregion of r. The region of an object pointer is the region of the targeted

object. The region of a pointer v is > iff v = null. We define r � > for all regions r.

The region type system of rlang (Figure 5.1) reflects this heap structure and explic-

itly specifies the region to which every pointer points with a region expression σ (. . . @σ).

79

τ = µ@σ | ∃ρ/δ.τ (types)

µ = region | T [σ1, . . . , σm] (base types)

σ = ρ | R | > (region expressions)

δ = σ � σ|¬δ|δ ∨ δ|(δ) (region properties)

struct T [ρ1, . . . , ρm]{1 : τ1, . . . , n : τn} (structure declarations)

T : type names, ρ: abstract regions, R: region constants

Figure 5.1: Region type language

To keep rlang simple, we only include types for pointers: pointers to regions (region), and

pointers to named records with named fields. Function and non-pointer types could be

added easily to both the heap model and type language.

Region expressions are either abstract regions ρ or elements of the set CR = R ∪

{>} of region constants. Region constants denote regions that always exist and cannot

be deleted, such as the “traditional region”. Abstract regions denote any region in AH .

Abstract regions are introduced existentially with the ∃ρ/δ.τ construct, which means that ρ

is a region in AH that respects the property specified by boolean expression δ. For instance,

the type ∃ρ/> � >.T [. . .]@ρ represents an object of type T in any region (as the boolean

expression is always true). To simplify notation, we write true as shorthand for > � >

and ∃ρ as a shorthand for ∃ρ/true. Structure definitions are parameterised over a set

ρ1, . . . , ρm of abstract regions; structure uses instantiate structure declarations with a set of

region expressions. Function declarations also introduce abstract regions (see Chapter 5.2).

If two values point to the same abstract region ρ then the values must specify

objects in the same region. As a consequence, if one of the values is null then ρ = > so the

other value is null too. Existentially quantified regions must be used if two values can be

null independently of each other, but point to the same region if non-null. For instance, in

struct L[ρ] {

v : ∃ρ′.region@ρ′,

next : ∃ρ′′/ρ′′ = > ∨ ρ′′ = ρ.L[ρ′′]@ρ′′

}

x : L[ρ]@ρ

x is a list stored in region ρ of arbitrary regions. Without the existentially quantified type

80

program ::= fn∗

fn ::= f [ρ1, . . . , ρm]/δ(x1 : τ1, . . . , xn : τn) :
τ, δ′

is [ρ′1, . . . , ρ
′

p]x
′

1 : τ ′

1, . . . , x
′

q : τ ′

q, s, x

s ::= s1; s2

| if x s1 s2

| while x s
| x0 = x1

| x0 = f [σ1, . . . , σm](x1, . . . , xn)
| x0 = x1.f ield
| x1.f ield = x2

| x0 = null

| x0 = new T [σ1, . . . , σm](x1, . . . , xn)@x′

| chk δ

Some predefined functions:

newregion[]/true() : ∃ρ.region@ρ, true

newsubregion[ρ]/true() : ∃ρ′/ρ′ � ρ.region@ρ′, true

deleteregion[ρ]/true(r : region@ρ) : region@>, true

regionof T [ρ, ρ1, . . .]/true(x : T [ρ1, . . .]@ρ) : region@ρ, true

Figure 5.2: rlang, a simple imperative language with regions

the next field could not be null as it would be in the same region as its parent (which is

obviously not null if next exists).

5.2 Region Type Checking in rlang

We chose to define rlang (Figure 5.2) as an imperative language both because this

is closer to C and because the properties of abstract regions are flow-sensitive: they change

as a result of function calls, field accesses and runtime checks and so may be different at

every program point.

Functions f have arguments x1, . . . , xn, local variables x′

1, . . . , x
′
q, body s and are

parameterised over abstract regions ρ1, . . . , ρm. The result of f is found in variable x after

s has executed. The set of abstract regions valid in the argument and result types of f

is {ρ1, . . . , ρm}. The set of abstract regions valid in the types of local variables of f is

{ρ1, . . . , ρm, ρ′1, . . . , ρ
′

p}. The local variables x′

1, . . . , x
′

q must be dead before s. Functions

have an input property δ that expresses requirements that must hold between the abstract

81

δ, Ls ` s, δ′ x : τ δ′ ⇒ δ′′ fv(δ) ∪ fv(δ′′) ⊆ {ρ1, . . . , ρm}
x′

1, . . . , x
′

q are dead before s

` f [ρ1, . . . , ρm]/δ(x1 : τ1, . . . , xn : τn) : τ, δ′′ is [ρ′1, . . . , ρ
′

p]x
′

1 : τ ′

1, . . . , x
′

q : τ ′

q, s, x
(fndef)

x0 : τ0 x1 : τ1 δ, L ` τ0 ← τ1, δ
′, L′

δ, L ` x0 = x1, δ
′

(assign)

x0 : τ0 x1 : µ1@σ1 x1.field : τ ′

1 δ ∧ σ1 6= >, L ` τ0 ← τ ′

1, δ
′, L′

δ, L ` x0 = x1.field, δ′
(read)

x1 : µ1@σ1 x1.field : τ ′

1 x2 : τ2 δ ∧ σ1 6= >, L ` τ ′

1 ← τ2, δ
′, L′

δ, L ` x1.field = x2, δ
′

(write)

struct T [ρ1, . . . , ρm]{field1 : τ ′

1, . . . ,fieldn : τ ′
n}

xi : τi δi, Li ` τ ′

i [σ1/ρ1, . . . , σm/ρm]← τi, δi+1, Li+1

x0 : τ0 x′ : region@σ′ δn+1, Ln+1 ` τ0 ← T [σ1, . . . , σm]@σ′, δ′, L′

δ1, L1 ` x0 = new T [σ1, . . . , σm](x1, . . . , xn)@x′, δ′
(new)

x0 : µ0@σ0 δ, L ` µ0@σ0 ← µ0@>, δ′, L′

δ, L ` x0 = null, δ′
(null)

fv(δ′) ⊆ L

δ, L ` chk δ′, δ ∧ δ′
(check)

δ, L ` s1, δ
′ δ′, Ls2

` s2, δ
′′

δ, L ` s1; s2, δ
′′

δ, Ls1
` s1, δ

′ δ, Ls2
` s2, δ

′′

δ, L ` if x s1 s2, δ
′ ∨ δ′′

δ ∨ δ′′, Ls ` s, δ′′

δ, L ` while x s, δ ∨ δ′′

f [ρ1, . . . , ρm]/δ′(y1 : τ ′

1, . . . yn : τ ′

n) : τ ′, δ′′ xi : τi

δi, Li ` τ ′

i [σ1/ρ1, . . . , σm/ρm]← τi, δi+1, Li+1 δn+1 ⇒ δ′[σ1/ρ1, . . . , σm/ρm]
δn+1 ∧ δ′′[σ1/ρ1, . . . , σm/ρm], Ln+1 ` τ0 ← τ ′[σ1/ρ1, . . . , σm/ρm], δ′′′, L′

δ1, L1 ` x0 = f [σ1, . . . , σm](x1, . . . , xn), δ′′′
(fncall)

Assignment
σ ∈ L ∪CR fv(δ′[σ/ρ]) ⊆ L

δ ⇒ δ′[σ/ρ] δ, L ` τ [σ/ρ]← τ ′, δ′′, L′

δ, L ` ∃ρ/δ′.τ ← τ ′, δ′′, L′
(∃gen.)

ρ 6∈ L δ ⇒ δ′′ fv(δ′′) ⊆ L
δ′′ ∧ δ′[ρ/ρ′], L ∪ {ρ} ` τ ← τ ′[ρ/ρ′], δ′′′, L′

δ, L ` τ ← ∃ρ′/δ′.τ ′, δ′′′, L′
(∃inst.)

δ, L ` σ ← σ′, δ′, L′

δ, L ` region@σ ← region@σ′, δ′, L′

δ, L ` σ ← σ′, δ1, L1 δi, Li ` σi ← σ′

i, δi+1, Li+1

δ, L ` T [σ1, . . . , σm]@σ ← T [σ′

1, . . . , σ
′
m]@σ′, δm+1, Lm+1

σ ∈ L ∪ CR δ ⇒ σ = σ′

δ, L ` σ ← σ′, δ, L
(equal)

ρ 6∈ L δ ⇒ δ′ fv(δ′) ⊆ L

δ, L ` ρ← σ′, δ′ ∧ ρ = σ′, L ∪ {ρ}
(bind)

Figure 5.3: Region Type Checking

82

region parameters at all calls to f . The output property δ ′ expresses properties that are

known to hold between the abstract region parameters when f returns.

The chk δ statement is a runtime check that the property specified by δ holds.

If the check fails, the program is aborted. Instantiation and generalisation of existential

types is implicit in the rules for assignment (Figure 5.3) rather than being done by explicit

instantiate and generalise operations. The rest of the language is straightforward: if

and while statements assume null is false and everything else is true; new statements

specify values for the structure’s fields; the program is executed by calling a function called

main with no arguments. Figure 5.2 also gives signatures for the predefined newregion,

newsubregion, deleteregion and regionof T (one for each structure type T) functions.

We write X[σ1/ρ1, . . . , σm/ρm] for substitution of region expressions for (free)

abstract regions in region expressions, boolean expressions and types. The notation x : τ

and x.field : τ asserts that x, or a field of x, has type τ . The set of free abstract regions of

a boolean expression δ is fv(δ).

Type checking for rlang (Figure 5.3) relies extensively on boolean expressions spec-

ifying properties of abstract regions. Statements of a function f are checked by the judgment

δ, Ls ` s, δ′. The input property δ describes the properties of f ’s abstract regions before

executing s, the output property δ′ the properties of these abstract regions after executing

s. The set Ls contains f ’s abstract region parameters and the abstract regions used in

any live variable’s type; Ls is used while typechecking assignments. We assume that Ls is

precomputed for each statement s using a standard liveness analysis.

Rather than have constructs for binding of abstract regions and instantiation and

generalisation of existential types, rlang allows these operations to be performed implicitly

during assignment. The judgments δ, L ` τ1 ← τ2, δ
′, L′ of Figure 5.3 check that a value

of type τ2 is assignable to a location of type τ1. These judgments take an input property

δ and live abstract region set L and produce an updated (as a result of binding abstract

regions) output property δ′ and live abstract region set L′.

Assignment can bind abstract regions (the (bind) rule). For instance,

x : region@ρ1

y : region@ρ2

x = y

sets x to the value of y and binds ρ1 to the same region as ρ2. We require that the bound

83

region ρ not be a member of L. Rebinding an abstract region used in a live variable would

be unsound. We also forbid rebinding the abstract regions used in a function’s parameters:

if these could be rebound, then the output property δ ′ of a function f (see Figure 5.2)

would not describe the properties of the function’s input region parameters, instead it

would describe properties of whatever regions the abstract regions were rebound to. It is

possible that the input property δ of an assignment described properties of the old value

of ρ, these properties are removed by using a new property δ ′, implied by δ, that only has

elements of L amongst its free variables.

Instantiation of an existential type is also implicit (the (∃inst. rule). The assign-

ment x = y with x : region@ρ1 and y : ∃ρ/ρ � ρ2.region@ρ sets x to the value of y and

binds ρ1 to a region that is less than or equal to ρ2. As with (bind), we require that the

newly bound abstract region ρ not be in L and build a new input property δ ′′, implied by

δ, that only has elements of L amongst its free variables. We then add to δ ′′ the properties

from the instantiated existential type.

Generalisation of existential types is also possible in an assignment statement (the

(∃gen. rule). The assignment x = y with x : ∃ρ/ρ � ρ2.region@ρ, y : region@ρ1 and

input property ρ1 � ρ2 is valid and sets x to the value of y. This assignment is allowed

as long as there is some region expression σ (in the example, σ = ρ1) which satisfies the

existential type’s bound, and that τ [σ/ρ] is assignable from τ ′.

The rest of the rules for assignment are traditional: base types are assignable if

their region expressions match or if the target region expression can be bound to the source

one using the (bind) rule. Two region expressions match if δ implies they are equal.

The rules for assigning local variables (assign), reading a field (read) or writing

a field (write) check that the source is assignable to the target. Additionally, reading or

writing a field of x guarantees that x is not null, hence that x’s region is not >. Object

creation (new) is essentially a sequence of assignments from the field values to the fields of

the newly created object, and of the newly created object to the new statement’s target.

Initialisation to null (null) requires only that the target variable’s region be >. After

execution of a runtime check, the checked relation holds (check).

The rules for statement sequencing, if and while statements are standard for

a forward data-flow problem. Function definition (fndef) is straightforward: the result

variable’s type must match the function declaration and the function’s output property

must be implied by the function body’s output property. All local variables of the function

84

must be dead as they have not been initialised.1

The most complicated rule is a call to a function f (fncall). All references to

elements of f ’s signature must substitute the actual region expressions at a call for f ’s

formal region parameters. The second line checks that the call’s arguments are assignable

to f ’s parameters and that the properties at the call site imply f ’s input property. After

the call, f ’s output property holds for the actual region expressions and f ’s result must be

assignable to the call’s destination.

5.3 Semantics

Our semantics concentrates on the regions of variables and objects and ignores the

other aspects of the types to simplify our presentation. We assume, in both the semantics

and soundness proof, that a non-null pointer of type region points to a region, and that a

non-null pointer of type T [σ1, . . . , σm]@σ points to some object of type T . Our semantics

does represent the concrete regions corresponding to the abstract regions, both for local

variables and for heap-allocated objects.

We first define a representation for heaps, values and regions:

• A value (or pointer) is represented as a unique natural integer. null pointers are

represented by 0.

• A region is represented as a unique natural integer. The > region is represented by

0. We assume our partial order on regions (�) is defined on these integers.

• Given a type struct T [ρ1, . . . , ρm]{f1 : τ1, . . . , fn : τn}, an object o of type T is

represented as a pair (R,P) containing a tuple of regions R = (r0, r1, . . . , rm) and a

tuple of values P = (v1, . . . , vm). The region of o is r0, ri is the value of ρi and vi is

the value of fi. As the > region contains no object r0 6= 0. The object representing

region r is the pair ((r), ()). Note that the > region is represented by object ((0), ()).

• A heap H is a partial map from N to objects, with 0 6∈ dom(H). Formally, H : N ↪→

(
⋃

∞

i=1 Ni) × (
⋃

∞

i=0 Ni). We assume that the set AH of regions of H is available. For

1Initialising local variables to null at entry would not be correct as this would also imply that some
abstract regions were ⊥, e.g., for the local variable x : region@ρ. If ρ was an abstract region parameter of
f this would be unsound.

85

x0 : τ0 x1 : τ1 < H,R,E(x1), τ0, τ1 >; R′

< H,E,R, x0 = x1 >;< H,E[x0 = E(x1)], R
′ >

(s assign)

x0 : τ0 x1 : T [σ1, . . . , σm]@σ struct T [ρ1, . . . , ρm]{. . . , fi : τi, . . .}
H(E(x1)) = (, (x1, . . . , xn)) < H,R, xi, τ0, τi[σ1/ρ1, . . . , σm/ρm] >; R′

< H,E,R, x0 = x1.fi >;< H,E[x0 = xi], R
′ >

(s read)

x1 : T [σ1, . . . , σm]@σ struct T [ρ1, . . . , ρm]{. . . , fi : τi, . . .} x2 : τ2

H(E(x1)) = ((r0, . . . , rm), (x1, . . . , xn))
< H,R,E(x2), τi[σ1/ρ1, . . . , σm/ρm], τ2 >; R′

o = ((r0, . . . , rm), (x1, . . . , xi−1, E(x2), xi+1, . . . , xn))

< H,E,R, x1.fi = x2 >;< H[E(x1) = o], E,R′ >
(s write)

x0 : τ0 xi : τi x′ : region@σ′ struct T [ρ1, . . . , ρm]{f1 : τ ′

1, . . . , fn : τ ′
n}

< H,Ri, E(xi), τ
′

i [σ1/ρ1, . . . , σm, ρm], τi >; Ri+1 v 6∈ dom(H) ∧ v 6= 0
H(E(x′)) = ((r), ()) r 6= 0 o = ((r,Rn+1σ1, . . . , Rn+1σm), (E(x1), . . . , E(xn)))

< H[v = o], Rn+1, v, τ0, T [σ1, . . . , σm]@σ′ >; R′

< H,E,R1, x0 = new T [σ1, . . . , σm](x1, . . . , xn)@x′ >;< H[v = o], E[x0 = v], R′ >
(s new)

x0 : µ0@σ0

< H,E, x0 = null >;< H,E[x0 = 0], R[σ0 = 0] >
(s null)

R |= δ

< H,E,R, chk δ >;< H,E,R >
(s chk)

< H,E,R, s1 >;< H ′, E′, R′ > < H ′, E′, R′, s2 >;< H ′′, E′′, R′′ >

< H,E,R, s1; s2 >;< H ′′, E′′, R′′ >

E(x) 6= 0 < H,E,R, s1 >;< H ′, E′, R′ >

< H,E,R, if x s1 s2 >;< H ′, E′, R′ >
E(x) = 0 < H,E,R, s2 >;< H ′, E′, R′ >

< H,E,R, if x s1 s2 >;< H ′, E′, R′ >

E(x) 6= 0 < H,E,R, s >;< H ′, E′, R′ >
< H ′, E′, R′, while x s >;< H ′′, E′′, R′′ >

< H,E,R, while x s >;< H ′′, E′′, R′′ >

E(x) = 0

< H,E,R, while x s >;< H,E,R >

f [ρ1, . . . , ρm]/δ(y1 : τ ′

1, . . . yn : τ ′

n) : τ ′, δ′ is [ρ′1, . . . , ρ
′

p]w
′

1 : τ ′′

1 , . . . , w′

q : τ ′′

q , s, y

Ef = [y1 = E(x1), . . . , yn = E(xn), w′

1 = 0, . . . , w′
q = 0]

< H,Ef , Rf , s >;< H ′, E′

f , R′

f >

Rf = [ρ1 = Rn+1σ1, . . . , ρm = Rn+1σm, ρ′1 = 0, . . . , ρ′p = 0]
xi : τi < H,Ri, E(xi), τ

′

i [σ1/ρ1, . . . , σm, ρm], τi >; Ri+1

< H ′, Rn+1, E
′

f (y), τ0, τ
′[σ1/ρ1, . . . , σm, ρm] >; R′

< H,E,R1, x0 = f [σ1, . . . , σm](x1, . . . , xn) >;< H ′, E[x0 = E′

f (y)], R′ >
(s fncall)

Figure 5.4: Semantic reduction rules

86

< H,R, v, τ [σ/ρ], τ ′ >; R′ σ from ∃gen.

< H,R, v,∃ρ/δ.τ, τ ′ >; R′
(a gen)

there exists r ∈ AH such that
R[ρ′ = r] |= δ′ and v : τ ′ is partially consistent with H under R[ρ′ = r]

ρ from ∃inst. < H,R[ρ = r], v, τ, τ ′[ρ/ρ′] >; R′

< H,R, v, τ,∃ρ′/δ′.τ ′ >; R′
(a inst)

there does not exist r ∈ AH such that
R[ρ′ = r] |= δ′ and v : τ ′ is partially consistent with H under R[ρ′ = r]

< H,R, v, τ,∃ρ′/δ′σ′.τ ′ >; R
(a inst unsafe)

< H,R, v, region@σ, region@σ′ >; R[σ = Rσ′]
(a region)

R1 = R[σ = Rσ′] Ri+1 = Ri[σi = Riσ
′

i]

< H,R, v, T [σ1, . . . , σm]@σ, T [σ′

1, . . . , σ
′

m]@σ′ >; Rm+1
(a struct)

Figure 5.5: Semantic assignment rules

simplicity of notation the source language names of the region constants are reused

as names for the corresponding runtime regions, so CR ⊆ AH .

Our semantics will use two environments during evaluation:

• An environment E mapping variables to values.

• An abstract region map R over abstract regions X, R : X ∪CR → AH (in a heap H),

mapping region expressions to regions. We assume that Rσ = σ for all σ ∈ CR.

We say that a region property δ is valid under abstract region map R, R |= δ, if:

R 6|= δ

R |= ¬δ

R |= δ1 or R |= δ2

R |= δ1 ∨ δ2

Rσ1 � Rσ2

R |= σ1 � σ2

The natural operational semantics (Figure 5.4) rules take the form

< H,E,R, s >;< H ′, E′, R′ >

meaning that evaluation of s with heap H, environment E and abstract region map R

produces a heap H ′, environment E ′ and abstract region map R′. The rules for assignment

(s assign), field read (s read) and write (s write) are straightforward: they apply sub-rules

for assignment (Figure 5.5, detailed below) to update the abstract region map, then modify

the environment or heap as necessary. Creation of an object (s new) is similar, but must

87

pick an unique value (v) for the pointer to the new object. Assignment of null (s null) is

a little strange as it does not update R for the abstract regions (used in µ0) bound as a

result of this assignment. These newly bound abstract regions have no meaningful value as

x0 does not point to an object after being assigned null.

The rule (s chk) for chk statements simply check that the asserted relation is valid

at runtime. The rules for statement sequencing, if and while are standard. Function

calls (s fncall) assign the function arguments to the instantiated types of the function’s

arguments (so as to update the abstract region map), then evaluates the function’s body

in a new environment (with the function’s arguments) and new abstract region map (with

the function’s region arguments). The function’s result is assigned to the result variable.

Except for the chk operations, an implementation of rlang does not need the

abstract region map. The heap for rlang need only contain the field values and the r0

field of the region tuple (which is necessary for implementing the regionof function and

reference counting). Our translation from RC to rlang (Chapter 5.6) uses chk statements

that can be verified using only these r0 fields.

Assignment (Figure 5.3) binds abstract regions, so can update the abstract region

map R. Hence assignment reduction rules (Figure 5.5) take the form

< H,R, v, τ1, τ2 >; R′

to represent assignment of a value v of type τ2 to a location of type τ1 with heap H and

abstract region map R. These rules return an updated abstract region map R ′.

Except for instantiation of existential types, these rules are simple: assignment of

region (a region) and structured types (a struct) updates R so that the region expressions

of the target type are equal to the corresponding region expressions of the source type.

The proof of soundness will show that this is correct even if the target region expression

is a live region expression. Existential generalisation (a gen) simply substitutes the region

expression σ′ used when type checking this assignment to allow the rest of the assignment

derivation to see the same types as the type checking derivation.

The instantiation of existential types is more complex as the reduction rules must

pick a region r for the instantiated abstract region ρ. This is straightforward if v 6= 0 and

ρ′ is used in the base type of τ ′ or if ρ′ is the region of v. In this case, r can be found in the

object stored at H(v). But if v = 0, if ρ′ is used only as a bound in subsequent existential

quantifiers in τ ′, or is not used at all in τ ′ then there is no value for r that can be read

88

directly from the heap. Rather than enumerate all the cases that must be considered, we

instead pick an arbitrary r that matches the existential quantifier’s bound and is consistent

with τ ′ and H(v), as specified by partial consistency. Partial consistency asserts that the

regions stored in the heap object for v match those specified in v’s type (we write fv(τ) for

the free abstract regions of a type τ):

Definition 5.3.1 v : τ is partially consistent with H under R (with fv(τ) ⊆ dom(R)) if it

is not partially inconsistent with H under R.2 v : τ is partially inconsistent with H under

R:

• if v = 0 and τ = µ@σ then Rσ 6= 0.

• if τ = region@σ and H(v) = ((r), ()) then r 6= Rσ

• if τ = T [σ1, . . . , σm]@σ, T is defined by struct T [ρ1, . . . , ρm]{f1 : τ1, . . . , fn : τn} and

H(v) = ((r0, r1, . . . , rm),). The property holds if (r0 6= Rσ) ∨ (∃j.Rσj 6= rj).

• if τ = ∃ρ/δ.τ ′ then for all r ∈ AH such that R[ρ = r] |= δ, we have v : τ ′ partially

inconsistent with H under R[ρ = r]

The rule for existential type assignment (a inst) then simply assigns a value r to

ρ that allows v : τ ′ to be partially consistent with H. When there does not exist such

a region r, evaluation of the assignment can continue with the (a inst unsafe) rule which

aborts the update of the abstract region map. We will show in the proof of soundness

that the (a inst unsafe) rule is never used by a well-typed program. It is easy to see that

an r that matches the constraints of (a inst) can be found by simple enumeration in time

proportional to |AH |
(n+1) where n is the number of existential quantifiers in τ ′. With a

little more care, such an r can be found in time at worst proportional to n.

5.4 Soundness

We express the soundness of our type system as the preservation by reductions

of the consistency of typed values with the heap and of constraint sets with the abstract

region map. These definitions of consistency are as follows (consistency of values is defined

as a lack of inconsistency to allow for consistent and circular data structures):

2We choose to make partial inconsistency the primary definition to match Definition 5.4.1.

89

Definition 5.4.1 v : τ is consistent with H under R (with fv(τ) ⊆ dom(R)) if it is not

inconsistent with H under R. We say v : τ is inconsistent with H under R:

• if v = 0 and τ = µ@σ then Rσ 6= 0.

• if τ = region@σ and H(v) = ((r), ()) then r 6= Rσ

• if τ = T [σ1, . . . , σm]@σ, T is defined by struct T [ρ1, . . . , ρm]{f1 : τ1, . . . , fn : τn} and

H(v) = ((r0, r1, . . . , rm), (v1, . . . , vn)). The property holds if (r0 6= Rσ) ∨ (∃j.Rσj 6=

rj) ∨ (∃i.vi : τi is inconsistent with H under [ρ1 = r1, . . . , ρm = rm]).

• if τ = ∃ρ/δ.τ ′ then for all r ∈ AH such that R[ρ = r] |= δ, we have v : τ ′ inconsistent

with H under R[ρ = r]

Definition 5.4.2 A set of values v1 : τ1, . . . , vn : τn is consistent with H under R if each

vi : τi is consistent with H under R.

Note that consistency of a value is a generalisation to all objects reachable from a

value of the partial consistency relation used by rlang’s semantics.

The main soundness theorem is as follows:

Theorem 5.4.3 Soundness: If

• δ, L ` s, δ′

• < H,E,R, s >;< H ′, E′, R′ >

• Variables x1 : τ1, . . . , xn : τn are live before s

• Variables x′

1 : τ ′

1, . . . , x
′
m : τ ′

m are live after s

• R |= δ

• E(x1) : τ1, . . . , E(xn) : τn are consistent with H under R

• w1 : α1, . . . , wl : αl are consistent with H under Q; the wi are used to guarantee that

the consistency of local variables are preserved during function calls

then

• R′ |= δ′

90

• E′(x′

1) : τ ′

1, . . . , E
′(xm) : τ ′

m are consistent with H ′ under R′

• w1 : α1, . . . , wl : αl are consistent with H ′ under Q

• The (a inst unsafe) assignment rule is not used in the semantic reduction

Proof: See below.

5.5 Soundness Proof

We start with some simple lemmas, then prove the soundness of the assignment

rules (Lemma 5.5.11) and the main soundness theorem by induction on the structure of

evaluations.

Lemma 5.5.1 If R|fv(τ) = R′|fv(τ) then v : τ is consistent with H under R iff v : τ is

consistent with H under R′.

Proof: obvious from the definition of consistency.

Lemma 5.5.2 v : τ is consistent with H under R[ρ = Rσ] iff v : τ [σ/ρ] is consistent with

H under R.

Proof: obvious from the definition of consistency.

Lemma 5.5.3 Let τ be a type and ρ1, . . . , ρm be distinct abstract regions with fv(τ) ⊆

{ρ1, . . . , ρm}. Then v : τ is consistent with H under [ρ1 = Rσ1, . . . , ρm = Rσm] iff v :

τ [σ1/ρ1, . . . , σm/ρm] is consistent with H under R.

Proof: follows from Lemmas 5.5.2 and 5.5.1.

The proofs of the following simple properties of |= are easy:

Lemma 5.5.4 Let R be an abstract region map, δ a region property, fv(δ) = {ρ1, . . . , ρm}.

Then R |= δ[σ1/ρ1, . . . , σm/ρm] iff [ρ1 = Rσ1, . . . , ρm = Rσm] |= δ.

Lemma 5.5.5 If R |= δ and R |= δ′ then R |= δ ∧ δ′.

Lemma 5.5.6 If R |= δ and δ ⇒ δ′ then R |= δ′.

Lemma 5.5.7 If R |= δ and R|fv(δ) = R′|fv(δ) then R′ |= δ.

91

Lemma 5.5.8 If r is some region, R[ρ′ = r] |= δ and ρ 6∈ fv(δ) then R[ρ = r] |= δ[ρ/ρ′].

Lemma 5.5.9 If v : τ is consistent with H under R then v : τ is partially consistent with

H under R.

Lemma 5.5.10 If v : ∃ρ/δ.τ is consistent with H under R, and r is such that R[ρ = r] |= δ

and v : τ is partially consistent with H under R[ρ = r], then v : τ is consistent with H

under R[ρ = r].

Proof: From definition of consistency and partial consistency we see that the abstract

region map used for checking the consistency of fields of objects does not depend on the

instantiation of quantified variables.

Lemma 5.5.11 Assignability If:

• δ, L ` τ1 ← τ2, δ
′, L′

• < H,R, v, τ1, τ2 >; R′,

• v : τ2 is consistent with H under R

• R |= δ

then v : τ1 is consistent with H under R′, R′ |= δ′ and R|L = R′|L. Additionally, the

(a inst unsafe) assignment rule is not used in the reduction.

Proof: By induction on the structure of the evaluation of the type assignment. The proof

considers each reduction rule in turn, and each case starts with the reduction and type

checking rules used.

•
< H,R, v, τ [σ/ρ], τ ′ >; R′

< H,R, v,∃ρ/δ′.τ, τ ′ >; R′

σ ∈ L ∪ CR fv(δ′[σ/ρ]) ⊆ L δ ⇒ δ′[σ/ρ] δ, L ` τ [σ/ρ]← τ ′, δ′′, L′

δ, L ` ∃ρ/δ′.τ ← τ ′, δ′′, L′

First we note that R |= δ and δ ⇒ δ′[σ/ρ] implies that R[ρ = Rσ] |= δ′ (Lemma 5.5.6).

By induction v : τ [σ/ρ] is consistent with H under R′, R′ |= δ′′ and R|L = R′|L. By

Lemma 5.5.2 v : τ is consistent with H under R′[ρ = R′σ]. As R|L = R′|L, σ ∈ L ∪ CR,

fv(δ′[σ/ρ]) ⊆ L and R[ρ = Rσ] |= δ′ we conclude that R′[ρ = R′σ] |= δ′. Therefore by the

definition of consistency for existential types, v : ∃ρ/δ.τ is consistent with H under R ′.

92

•

there exists r ∈ AH such that
R[ρ′ = r] |= δ′ and v : τ ′ is partially consistent with H under R[ρ′ = r]

< H,R[ρ = r], v, τ, τ ′[ρ/ρ′] >; R′

< H,R, v, τ,∃ρ′/δ′.τ ′ >; R′

ρ 6∈ L δ ⇒ δ′′ fv(δ′′) ⊆ L δ′′ ∧ δ′[ρ/ρ′], L ∪ {ρ} ` τ ← τ ′[ρ/ρ′], δ′′′, L′

δ, L ` τ ← ∃ρ′/δ′.τ ′, δ′′′, L′

By the hypothesis, v : ∃ρ′/δ′.τ ′ is consistent with H under R, so by Lemma 5.5.10

v : τ ′ is consistent with H under R[ρ′ = r]. By Lemmas 5.5.2 and 5.5.1, v : τ ′[ρ/ρ′] is

consistent with H under R[ρ = r]. From R |= δ, δ ⇒ δ ′′ and ρ 6∈ L, fv(δ′′) ⊆ L we get

R[ρ = r] |= δ′′ (Lemmas 5.5.6 and 5.5.7). By Lemma 5.5.8 ρ 6∈ L, R[ρ′ = r] |= δ′ implies

that R[ρ = r] |= δ′[ρ/ρ′]. Therefore R[ρ = r] |= δ′′ ∧ δ′[ρ/ρ′] so, by induction, v : τ is

consistent with H under R′, R′ |= δ′′′ and R|L = R′|L.

•

there does not exist r ∈ AH such that
R[ρ′ = r] |= δ′ and v : τ ′ is partially consistent with H under R[ρ′ = r]

< H,R, v, τ,∃ρ′/δ′.τ ′ >; R

By the hypothesis, v : ∃ρ′/δ′.τ ′ is consistent with H under R so (Lemma 5.5.9) v : ∃ρ′/δ′.τ ′

is partially consistent with H under R. Therefore there does exist r ∈ AH such that

R[ρ′ = r] |= δ′ and v : τ ′ is partially consistent with H under R[ρ′ = r], a contradiction.

Therefore this (a inst unsafe) rule can never be applied.

•
< H,R, v, region@σ, region@σ′ >; R[σ = Rσ′]

δ, L ` σ ← σ′, δ′, L′

δ, L ` region@σ ← region@σ′, δ′, L′

σ ∈ L ∪ CR δ ⇒ σ = σ′

δ, L ` σ ← σ′, δ, L

σ 6∈ L δ ⇒ δ′ fv(δ′) ⊆ L

δ, L ` σ ← σ′, δ′ ∧ σ = σ′, L ∪ {σ}

If σ ∈ L, then from R |= δ and δ ⇒ σ = σ′, Rσ = Rσ′ so R[σ = Rσ′] = R. Therefore

v : region@σ′ is consistent with H under R[σ = Rσ′].

If σ 6∈ L, then R[σ = Rσ′]|L = R|L. So from δ ⇒ δ′, fv(δ′) ⊆ L and Lemmas 5.5.6

and 5.5.7 R[σ = Rσ′] |= δ′. And obviously, R[σ = Rσ′] |= σ = σ′. So R[σ = Rσ′] |=

δ′ ∧ σ = σ′ and v : region@σ′ is consistent with H under R[σ = Rσ′].

93

•
R1 = R[σ = Rσ′] Ri+1 = Ri[σi = Riσ

′

i]

< H,R, v, T [σ1, . . . , σm]@σ, T [σ′

1, . . . , σ
′
m]@σ′ >; Rm+1

δ, L ` σ ← σ′, δ1, L1 δi, Li ` σi ← σ′

i, δi+1, Li+1

δ, L ` T [σ1, . . . , σm]@σ ← T [σ′

1, . . . , σ
′

m]@σ′, δm+1, Lm+1

The argument from the previous case is repeated m + 1 times.

Theorem 5.4.3: Soundness: If

• δ, L ` s, δ′

• < H,E,R, s >;< H ′, E′, R′ >

• Variables x1 : τ1, . . . , xn : τn are live before s

• Variables x′

1 : τ ′

1, . . . , x
′
m : τ ′

m are live after s

• R |= δ

• E(x1) : τ1, . . . , E(xn) : τn are consistent with H under R

• w1 : α1, . . . , wl : αl are consistent with H under Q. The wi are used to guarantee that

the consistency of local variables are preserved during function calls (see the function

call case below).

then

• R′ |= δ′

• E′(x′

1) : τ ′

1, . . . , E
′(xm) : τ ′

m are consistent with H ′ under R′

• w1 : α1, . . . , wl : αl are consistent with H ′ under Q

• The (a inst unsafe) assignment rule is not used in the semantic reduction

Proof: By induction on the structure of the evaluation of s. The proof considers each

reduction rule in turn (each case starts with the reduction and type checking rules). In

rules where H = H ′ we can immediately conclude that:

• w1 : α1, . . . , wl : αl are consistent with H ′ under Q.

• If R|L = R′|L, then all variables live after s that are not assigned in s are consistent

with H ′ under R′.

94

In these rules we will thus only show that R′ |= δ′, R|L = R′|L, and live assigned variables

are consistent with H under R′.

The fact that (a inst unsafe) is not used in the reduction follows from Lemma 5.5.11,

used in all cases where semantic reduction rules invoke the semantic assignment rules. This

fact is not repeated in the cases below.

•
< H,E,R, s1 >;< H ′, E′, R′ > < H ′, E′, R′, s2 >;< H ′′, E′′, R′′ >

< H,E,R, s1; s2 >;< H ′′, E′′, R′′ >

δ,L ` s1, δ
′ δ′, Ls2

` s2, δ
′′

δ, L ` s1; s2, δ
′′

The live variables before s1; s2 are the same as those before s1 so by induction, we conclude

that R′ |= δ′, that the variables live after s1 are consistent with H ′ under R′ and that

w1 : α1, . . . , wl : αl are consistent with H ′ under Q. The variables live after s1 are the

variables live before s2 so by induction, we conclude that R′′ |= δ′′, that variables live

after s2 (which are the same as those live after s1; s2) are consistent with H ′′ under R′′

and that w1 : α1, . . . , wl : αl are consistent with H ′′ under Q.

•
E(x) 6= 0 < H,E,R, s1 >;< H ′, E′, R′ >

< H,E,R, if x s1 s2 >;< H ′, E′, R′ >

δ,Ls1
` s1, δ

′ δ, Ls2
` s2, δ

′′

δ, L ` if x s1 s2, δ
′ ∨ δ′′

The live variables before s1 are a subset of those before the if, so by induction, we

conclude that R′ |= δ′, that variables live after s1 (which are the same as those after the

if) are consistent with H ′ under R′, and that w1 : α1, . . . , wl : αl are consistent with H ′

under Q. By Lemma 5.5.6 and δ′ ⇒ δ′ ∨ δ′′ we get R′ |= δ′ ∨ δ′′. The E(x) = 0 case is

symmetric.

•

E(x) 6= 0
< H,E,R, s >;< H ′, E′, R′ > < H ′, E′, R′, while x s >;< H ′′, E′′, R′′ >

< H,E,R, while x s >;< H ′′, E′′, R′′ >

δ ∨ δ′′, Ls ` s, δ′′

δ, L ` while x s, δ ∨ δ′′

The live variables before s are a subset of those before the while and δ ⇒ δ ∨ δ ′′ so

by induction and Lemma 5.5.6, R′ |= δ′′, the live variables after s are consistent with

H ′ under R and w1 : α1, . . . , wl : αl are consistent with H ′ under Q. The variables live

after s are a superset of those before the while and δ ′′ ⇒ δ ∨ δ′′ so by induction and

Lemma 5.5.6 R′′ |= δ′, the live variables after the while are consistent with H ′′ under R′′

and w1 : α1, . . . , wl : αl are consistent with H ′′ under Q.

95

•
E(x) = 0

< H,E,R, while x s >;< H,E,R >

δ ∨ δ′′, Ls ` s, δ′′

δ, L ` while x s, δ ∨ δ′′

The live variables after the while are a subset of those before it, and δ ⇒ δ ∨ δ ′′ so this

case concludes.

•
v0 : τ0 v1 : τ1 < H,R,E(v1), τ0, τ1 >; R′

< H,E,R, v0 = v1 >;< H,E[v0 = E(v1)], R
′ >

δ,L ` τ0 ← τ1, δ
′, L′

δ, L ` v0 = v1, δ
′

By assumption, E(v1) : τ1 is consistent with H under R and R |= δ, so by Lemma 5.5.11,

E(v1) : τ0 is consistent with H under R′, R′ |= δ′ and R′|L = R|L.

•

x0 : τ0 x1 : T [σ1, . . . , σm]@σ struct T [ρ1, . . . , ρm]{. . . , fi : τi, . . .}
H(E(x1)) = ((r0, . . .), (v1, . . . , vn)) < H,R, vi, τ0, τi[σ1/ρ1, . . . , σm/ρm] >; R′

< H,E,R, x0 = x1.fi >;< H,E[x0 = vi], R
′ >

δ ∧ σ 6= >, L ` τ0 ← τi[σ1/ρ1, . . . , σm/ρm], δ′, L′

δ, L ` x0 = x1.fi, δ
′

From the definition of a heap, r0 6= 0 so by consistency of E(x1) with H under R,

Rσ = r0 6= 0. Therefore by Lemma 5.5.5 R |= δ ∧ σ 6= >. Also vi : τi is consistent

with H under [ρ1 = Rσ1, . . . , ρm = Rσm], so (Lemma 5.5.3) vi : τi[σ1/ρ1, . . . , σm/ρm]

is consistent with H under R. By Lemma 5.5.11 vi : τ0 is consistent with H under R′,

R′ |= δ′ and R′|L = R|L.

•

x1 : T [σ1, . . . , σm]@σ struct T [ρ1, . . . , ρm]{. . . , fi : τi, . . .} x2 : τ2

H(E(x1)) = ((r0, . . . , rm), (v1, . . . , vn))
< H,R,E(x2), τi[σ1/ρ1, . . . , σm/ρm], τ2 >; R′

o = ((r0, . . . , rm), (v1, . . . , vi−1, E(x2), vi+1, . . . , vn)) H ′ = H[E(x1) = o]

< H,E,R, x1.fi = x2 >;< H ′, E,R′ >

δ ∧ σ 6= >, L ` τi[σ1/ρ1, . . . , σm/ρm]← τ2, δ
′, L′

δ, L ` x1.fi = x2, δ
′

From the definition of a heap, r0 6= 0 so by consistency of E(x1) with H under R,

Rσ = r0 6= 0. Therefore by Lemma 5.5.5 R |= δ ∧ σ 6= >. Also E(x2) : τ2 is consistent

with H under R, so by Lemma 5.5.11 E(x2) : τi[σ1/ρ1, . . . , σm/ρm] is consistent with H

under R′, R′ |= δ′ and R|L = R′|L. By Lemma 5.5.3 E(x2) : τi is consistent with H under

[ρ1 = R′σ1, . . . , ρm = R′σm]. Also L = L′ as {σ1, . . . , σm} ⊆ L, so R = R′.

We must show the consistency of E(x′

1), . . . , E(x′

m) (the values of the live variables after

the field assignment) with H ′ under R and of w1, . . . , wl with H ′ under Q. The live

variables after this statement are a subset of those live before it so we can replace the

E(x′

1), . . . , E(x′

m) by E(x1), . . . , E(xn) (the values of the live variables before the field

assignment). We consider these variables and the wi’s together by showing that there

96

is no value v : τ consistent with H under some abstract region map P and inconsistent

with H ′ under P .

First we note that if v : τ is consistent with H ′ under P then it is not partially inconsistent

with H ′ under P . Also AH = AH′ , the regions of heap objects are unchanged in H and

H ′ and dom(H) = dom(H ′). Thus partial inconsistency of v : τ with H ′ under P is

equivalent to partial inconsistency of v : τ with H under P .

Assume there exists some value v : τ consistent with H under P and inconsistent with

H ′ under P . Any proof of inconsistency can be reduced to one of the two following cases:

• v : τ is partially inconsistent with H ′ (so also with H) under P . But v : τ is

consistent with H under P , a contradiction.

• There exists w : U [. . .]@ reachable in H ′ from v such that

– struct U [ρ′1, . . . , ρ
′
p]{f1 : τ ′

1, . . . , fq : τ ′
q}

– H ′(w) = ((s0, . . . , sp), (w
′

1, . . . , w
′
q))

– w′

k : τ ′

k is partially inconsistent with H ′ under P ′ = [ρ′1 = s1, . . . , ρ
′
q = sq].

So w′

k : τ ′

k is partially inconsistent with H under P ′. Note also that H(w) =

((s0, . . . , sp), . . .) and w must be reachable in H from some some v ′ : τ ′ (either the

value of a live variable or one of w1, . . . , wl), with v′ : τ ′ consistent with H under P .

There are again two cases:

– If w 6= E(x1) or k 6= i (i.e., yk is not the assigned field) then w′

k : τ ′

k is not

partially inconsistent with H under P ′, a contradiction.

– If w = E(x1) and k = i (i.e., we are considering the assigned field) we saw above

that E(x2) = w′

k : τi = τ ′

k is consistent with H under [ρ1 = Rσ1, . . . , ρm = Rσm].

By the consistency of E(x1) : T [σ1, . . . , σm]@σ with R we conclude P ′ = [ρ1 =

Rσ1, . . . , ρm = Rσm] so w′

k : τ ′

k is not partially inconsistent with H under P ′, a

contradiction.

•
x0 : µ0@σ0

< H,E, x0 = null >;< H,E[x0 = 0], R[σ0 = 0] >

δ,L ` µ0@σ0 ← µ0@>, δ′, L′

δ, L ` x0 = null, δ′

We show that R|L = R[σ0 = 0]|L:

• σ0 6∈ L: obvious.

• σ0 ∈ L: from the assignment rules we get δ ⇒ σ0 = > so from R |= δ and

Lemma 5.5.6 we get Rσ0 = 0. Therefore R|L = R[σ0 = 0]|L.

97

Also x0: E[x0 = 0](x0) = 0 : µ0@σ0 is consistent with H under R[σ0 = 0].

Next we show that δ, L ` σ0 ← >, δ1, L1 (the first step of the assignment) implies that

R[σ0 = 0] |= δ1:

• σ0 ∈ L: from the assignment rules δ ≡ δ1 so R[σ0 = 0] = R |= δ1.

• σ0 6∈ L: from Lemmas 5.5.6, 5.5.7 and 5.5.5 we conclude that R[σ0 = 0] |= δ1.

If µ0 = region we have shown R[σ0 = 0] |= δ′. If µ0 = T [σ1, . . . , σm] then we have

δi, Li ` σi ← σi, δi+1, Li+1. By induction on i. we show that R[σ0 = 0] |= δi for

i = 1 . . . m + 1:

• i = 1: see above.

• i 6= 1, σi ∈ L: then δi+1 ≡ δi so by induction, R[σ0 = 0] |= δi+1.

• i 6= 1, σi 6∈ L: by Lemmas 5.5.6 and 5.5.5 R[σ0 = 0] |= δi+1.

So R[σ0 = 0] |= δ′.

•

x0 : τ0 xi : τi x′ : region@σ′ struct T [ρ1, . . . , ρm]{f1 : τ ′

1, . . . , fn : τ ′
n}

< H,Ri, E(xi), τ
′

i [σ1/ρ1, . . . , σm, ρm], τi >; Ri+1

< H[v = o], Rn+1, x, τ0, T [σ1, . . . , σm]@σ′ >; R′

v 6∈ dom(H) ∧ v 6= 0 H(E(x′)) = (region, r,)
o = ((r,Rn+1σ1, . . . , Rn+1σm), (E(x1), . . . , E(xn)))

< H,E,R1, x0 = new T [σ1, . . . , σm](x1, . . . , xn)@x′ >;< H[v = o], E[x0 = v], R′ >

δi, Li ` τ ′

i [σ1/ρ1, . . . , σm/ρm]← τi, δi+1, Li+1

δn+1, Ln+1 ` τ0 ← T [σ1, . . . , σm]@σ′, δ′, L′

δ1, L1 ` x0 = new T [σ1, . . . , σm](x1, . . . , xn)@x′, δ′

By induction on 1 . . . n and Lemmas 5.5.11, 5.5.3 and 5.5.1 we conclude that E(xi) : τ ′

i

are consistent with [ρ1 = Rn+1σ1, . . . , ρm = Rn+1σm], Rn+1 |= δn+1 and Rn+1|L = R.

As v 6∈ dom(H) (so v is not a value in the environment or in any object in H), v :

T [σ1, . . . , σm]@σ is consistent with H[v = o] under Rn+1, and all live variables after this

statement are consistent with H[v = o] under Rn+1. Similarly w1 : α1, . . . , wl : αl are

consistent with H[v = 0] under Q.

The assignment to x0 is a special case of the x0 = x1 rule seen above (replacing E(x1)

by v).

•
R |= δ′

< H,E,R, chk δ′ >;< H,E,R >

fv(δ′) ⊆ L

δ, L ` chk δ′, δ ∧ δ′

We only need to show that R |= δ ∧ δ′. This follows immediately from Lemma 5.5.5.

98

•

f [ρ1, . . . , ρm]/δ′(y1 : τ ′

1, . . . yn : τ ′

n) : τ ′, δ′′ is [ρ′1, . . . , ρ
′

p]y
′

1 : τ ′′

1 , . . . , y′q : τ ′′

q , s, y

Ef = [y1 = E(x1), . . . , yn = E(xn), y′1 = 0, . . . , y′q = 0]
Rf = [ρ1 = Rn+1σ1, . . . , ρm = Rn+1σm, ρ′1 = 0, . . . , ρ′p = 0]

< H,Ef , Rf , s >;< H ′, E′

f , R′

f >

xi : τi < H,Ri, E(xi), τ
′

i [σ1/ρ1, . . . , σm, ρm], τi >; Ri+1

< H ′, Rn+1, E
′

f (y), τ0, τ
′[σ1/ρ1, . . . , σm, ρm] >; R′

< H,E,R1, x0 = f [σ1, . . . , σm](x1, . . . , xn) >;< H ′, E[x0 = E′

f (y)], R′ >

δi, Li ` τ ′

i [σ1/ρ1, . . . , σm/ρm]← τi, δi+1, Li+1 δn+1 ⇒ δ′[σ1/ρ1, . . . , σm/ρm]
δn+1 ∧ δ′′[σ1/ρ1, . . . , σm/ρm], Ln+1 ` τ0 ← τ ′[σ1/ρ1, . . . , σm/ρm], δ′′′, L′

δ′, Ls ` s, δiv δiv ⇒ δ′′ fv(δ′) ∪ fv(δ′′) ⊆ {ρ1, . . . , ρm} y′1, . . . , y
′

q dead before s

δ1, L1 ` x0 = f [σ1, . . . , σm](x1, . . . , xn), δ′′′

By induction on 1 . . . n we conclude that ∀i.E(xi) : τ ′

i [σ1/ρ1, . . . , σm/ρm] is consistent with

H under Rn+1, and Rn+1 |= δn+1. Therefore (Lemma 5.5.6) Rn+1 |= δ′[σ1/ρ1, . . . , σm/ρm].

By Lemmas 5.5.1 and 5.5.3 ∀i.E(xi) = Ef (yi) : τ ′

i is consistent with H under Rf and by

Lemma 5.5.4 Rf |= δ′. By assumption, y′

1, . . . , y
′
q are dead before s, so all live variables

before s are consistent with H under Rf .

Let N be the abstract regions in Ln+1 (N = Ln+1 − CR). For simplicity of exposition,

we assume N ∩ dom(Q) = ∅ (this is easily achieved by suitable renaming). We define Q ′

as Q′σ = Qσ if σ ∈ dom(Q) and Q′σ = Rn+1σ if σ ∈ N . Let the live variables before the

function call be x′′

1 : τ ′′

1 , . . . , x′′

p : τ ′′

p .

By induction, with extra values w1 : α1, . . . , wl : αl, E(x′′

1) : τ ′′

1 , . . . , E(x′′

p) : τ ′′

p consistent

with H under Q′, we conclude that R′

f |= δiv (and by Lemma 5.5.6 R′

f |= δ′′), E′

f (y) : τ ′ is

consistent with H ′ under R′

f and w1 : α1, . . . , wl : αl, E(x′′

1) : τ ′′

1 , . . . , E(x′′
p) : τ ′′

p consistent

with H ′ under Q′. From this we conclude that w1 : α1, . . . , wl : αl are consistent with H ′

under Q.

The typechecking rules specify that the L sets of f all contain {ρ1, . . . , ρm} so ∀i.R′

fρi =

Rfρi = Rn+1σi. Therefore Rn+1 (Lemma 5.5.4) is consistent with δ′′[σ1/ρ1, . . . , σm/ρm].

By Lemmas 5.5.1 and 5.5.3 E ′

f (y) : τ ′[σ1/ρ1, . . . , σm/ρm] is consistent with H ′ under

Rn+1. By Lemma 5.5.5 Rn+1 |= δn+1 ∧ δ′′[σ1/ρ1, . . . , σm/ρm]. By Lemma 5.5.11, E[x0 =

E′

f (y)](x0) = E′

f (y) : τ0 is consistent with H ′ under R′ and R′ |= δ′′′.

Finally, ∀σ ∈ Ln+1.R
′σ = Rn+1σ = Q′σ, so all live variables other than x0 are also

consistent with H ′ under R′.

99

5.6 Translating RC to rlang

There are severals ways RC can be translated to rlang. For instance, one could

apply a “region inference”-like algorithm [55] to RC programs, representing the results in

rlang, in an attempt to find a very precise description of the program’s region structure.

Our goal is different: we want to translate an RC program P into an rlang program P ′

that faithfully matches P , then analyse P ′ to verify the correctness of assignments to point-

ers annotated with sameregion, parentptr and traditional. We therefore perform a

straightforward translation, while guaranteeing the following properties of P ′:

• There is one region constant, RT , for the “traditional region”.

• For every structured type X in P there is a structured type X[ρ] in P ′. The abstract

region ρ represents the region in which the structure is stored. So pointers to X in P ′

are always of the form X[σ]@σ.

A field f in X[ρ] of type T which is not sameregion, parentptr or traditional in

P can point to any region. So its type in P ′ is ∃ρ′.T [ρ′]@ρ′. A traditional f can be

null or point to the traditional region so its type is ∃ρ′/ρ′ = >∨ρ′ = RT .T [ρ′]@ρ′. A

sameregion f can be null or point to an object in ρ, so its type is ∃ρ′/ρ′ = >∨ ρ′ =

ρ.T [ρ′]@ρ′. Finally, a parentptr f can point upwards in the region hierarchy (which

includes being null as the region of null values is >), so its type is ∃ρ′/ρ � ρ′.T [ρ′]@ρ′

For example,

struct L {

region v;

L *sameregion n;

};

⇒

struct L[ρ] {

v : ∃ρ′.region@ρ′,

n : ∃ρ′/ρ′ = > ∨ ρ′ = ρ.L[ρ′]@ρ

}

Global variables are represented as fields of a Global structure, stored in the tradi-

tional region, which is passed to every function.

• Every local variable and function argument x in P ′ is associated with a distinct ab-

stract region ρx. If x is of type T in P , its type becomes T [ρx]@ρx in P ′. Function

arguments are never assigned or used directly as the function result, and the destina-

tion of an assignment is not used elsewhere in the assignment statement. 3

3This last restriction is due to the rules for handling liveness in Figure 5.3.

100

• Every field assignment x1.f = x2 (with x1, x2 assumed local) is immediately preceded

by an appropriate runtime check: chk ρx2
= > ∨ ρx2

= ρx1
if f is sameregion in

P ; chk ρx1
� ρx2

if f is parentptr; chk ρx2
= > ∨ ρx2

= RT if f is traditional.

This matches the model for these annotations given in Chapter 3.2.4: assignments will

abort the program if the requirements of sameregion, parentptr or traditional are

not met.

• We always represent the result of a function as an existential type. Combined with

the rules above, a function f with one argument of type T and result of type T ′ always

has signature

f [ρx]/δ(x : T [ρx]@ρx) : ∃ρ/δ′.T ′[ρ]@ρ, δ′′

for some boolean expressions δ, δ′, δ′′. This representation allows us to have the same

type (ignoring the boolean expressions) for a function returning the region of its

argument (myregionof) and for a function returning a new region (mynewregion):

myregionof[ρx]/true(x : T [ρx]@ρx) : ∃ρ/ρ = ρx.region@ρ, true

mynewregion[ρx]/true(x : T [ρx]@ρx) : ∃ρ/true.region@ρ, true

It is easy to verify that an rlang program with these properties can be type checked,

under the assumption that all function input, output and result properties sets are true.

The implementation of RC infers better properties than this simple approximation by cast-

ing the inference of input, output and result properties as a dataflow problem:

• The set of facts we consider in our analysis of a function f with abstract regions

{ρ1, . . . , ρm} are: σ = >, σ 6= >, σ1 � σ2, σ1 = > ∨ σ1 = σ2 for all σ, σ1, σ2 ∈

{ρ1, . . . , ρm} ∪ CR. We call each of these facts a constraint. A constraint set C corre-

sponds to the boolean expression
∧

δ∈C δ. Our inference system replaces all boolean

expressions by these constraint sets.

• We conservatively approximate the type checking rules for if and while by constraint

set intersection. This is safe as

(
∧

δ∈C

δ) ∨ (
∧

δ∈C ′

δ)⇒
∧

δ∈(C∩C′)

δ

• Constraint sets form a finite-height lattice under set inclusion. The operations in the

type checking rules are all monotonic when expressed in terms of constraint sets and

101

there is a least solution (all properties set to true, i.e., all constraint sets empty).

Therefore it is possible to find the best collection of constraint sets using a greatest-

fixed-point-seeking dataflow analysis of the whole program. This greatest-fixed-point

for constraint sets is also the most precise typing possible (using these constraint sets).

• RC restricts this dataflow analysis to a single source file by assuming that any non-

static C function and any function called via a function pointer has empty input,

output and result constraint sets. The complexity of this analysis is O(kSn4), where

k is the number of functions in a file, S the number of statements, and n the greatest

number of local variables in a single function. We keep the analysis tractable by

ignoring local variables that are effectively temporaries (all uses have a single reaching

definition). The largest analysis time on any file in our benchmarks is 30s, with all

other times being less than 10s. The analysis completes in less than 1s for 96% of

files.

Once the inference is complete, we can safely eliminate any chk statement that

asserts a property that is implied by its input constraint set. Results of this analysis are

presented in Chapter 6.8.

5.7 Alternate Translations of RC to rlang

We have considered alternate ways of translating RC programs to rlang. Possible

changes come in three categories, which are discussed at greater length below:

• Use of the extensions to RC discussed in Chapter 3.4 will lead to more precise

rlang types, and therefore allow the static verification of more runtime checks (Chap-

ter 5.7.1).

• The model for runtime checks in RC could be changed, e.g., by requiring that all

assignments to annotated fields be statically verifiable (Chapter 5.7.2).

• The region aspects of rlang types could be inferred from the RC source rather than re-

lying on the user to provide annotations in the form of type qualifiers (Chapter 5.7.3).

102

5.7.1 Extensions to RC

The addition of a new pointer type qualifier such as childptr is easy to incorporate

into the translation to rlang. A field f in X[ρ] of type T that is childptr can be null or

point to an object in a subregion of ρ, so its type is ∃ρ′/ρ′ = >∨ρ′ � ρ. The constraint sets

used in type inference extend naturally to include the childptr fact ρ′ = >∨ρ′ � ρ. Other

potential pointer type qualifiers for RC can most likely be handled in a similar fashion.

The function qualifiers proposed in Chapter 3.4 are also easily modeled in rlang.

It is sufficient to add appropriate runtime checks at every call site: in a call f(a1, . . . , an)

(we assume all arguments are local variables for simplicity) to a function f annotated with

(pn is the nth parameter to f):

• sameregion(pi, pj): precede the call with

chk ρai
= > ∨ ρaj

= > ∨ ρai
= ρaj

• parentptr(pi, pj): precede the call with

chk ρaj
= > ∨ ρaj

� ρai

As with childptr is is necessary to extend constraint sets to represent the facts verified

by these runtime checks. If the type inference is performed on the whole program, these

runtime checks are sufficient to guarantee that the properties of an annotated function f

will hold in f : every call to f will be preceded by the necessary checks, so the greatest

fixed point solution of the type inference for f will include the properties asserted by these

runtime checks. In the presence of separate compilation we must change the assumption

that any non-static C function and any function called via a function pointer has empty

input, output and result constraint sets. Instead, we can assume that the properties of an

annotated function f always hold inside f and give f the appropriate input constraint set.

A similar process can be used to model the annotations that describe sameregion

and parentptr properties of a function’s result.

5.7.2 Runtime Checks

There are three reasonable models for runtime checks for the RC annotations:

103

• Perform a runtime check at all uses of the annotations, i.e., at all assignments to

annotated types (and, if added to RC, at all calls to annotated functions as described

above). This is the approach we selected. The type inference process is used to

eliminate unnecessary checks.

• Optimise the placement of runtime checks: allow runtime checks to be moved from

their natural placement, under the condition that a moved check must not cause a

program that would have succeeded to fail. For instance, a check on both branches

of an if could be moved before the if, or a check executed on all calls to a function

f could be moved before all calls to f (it might be possible to show that the check is

safe at some call sites). This appears to be a hard optimisation problem (requiring at

the very least an execution profile estimate), requires whole program analysis to do

much movement of checks out of functions, and could produce unintuitive behaviour

as a failed check would not occur where the programmer expects it.

• Require that all annotations be statically verifiable. This corresponds to translating

RC programs to rlang programs with no uses of the chk statement. The type inference

process can then be used to see if the resulting program is type-correct. To be useful

this requires either whole program analysis of RC programs or the use (and static

verification) of the proposed function annotations. In the spirit of RC’s preference

of greater program flexibility via dynamic rather than static safety, we chose to keep

runtime checks.

5.7.3 Annotation Inference

An analysis that infers sameregion fields in an RC program (with no annotations)

could be built as follows:

• Translate the RC program to rlang as in Chapter 5.6. Note that there will be no chk

statements as there are no type annotations.

• Extend rlang’s region properties to include boolean variables with global scope. For

every field f in X[ρ] of type T add a boolean variable sXf
and give f the type

∃ρ′/sXf
⇒ (ρ′ = > ∨ ρ′ = ρ).T [ρ′]@ρ′. This variable, if true, will require that f be

sameregion.

104

• Find, using an appropriate type inference algorithm, a set of values for the sXf
vari-

ables that produces a legal typing for the rlang program. Note that is always at least

one legal typing where all boolean variables are false (no fields are sameregion).

This scheme can obviously be extended to the parentptr and traditional an-

notations at the expense of greater complexity.

We did not choose to investigate this path further for several reasons. First, it

requires a complex, unpredictable whole program analysis. Small changes to the code may

prevent a field from being sameregion. Secondly, we have found in our benchmarks that in

many cases many, but not all, assignments to a field declared sameregion can be statically

verified. This inference scheme would not be able to infer that such a field is sameregion.

Finally, and most importantly, this approach would lose the documentation of programmer

intent that is implicit in the sameregion declarations.

105

Chapter 6

Results

We designed and evaluated RC with the help of eight allocation-intensive C pro-

grams. We briefly present these programs in Chapter 6.1, describe how they use regions

in Chapter 6.2 and summarise the changes necessary to run these programs with RC in

Chapter 6.3.

The second half of this chapter discusses the results of running these benchmarks

with RC and other allocators. Chapter 6.4 presents these other allocators and our test

environment. Chapter 6.5 gives an overview of each benchmark’s allocation and pointer-

write behaviour. We compare RC’s memory consumption (Chapter 6.6) and performance

(Chapter 6.7) with the other allocators. In these chapters we also compare RC to our

old system C@ and to the alternative reference-counting schemes of Chapter 4.3.5. We

then investigate in more detail the performance of our type qualifiers (Chapter 6.8) and

our schemes of Chapter 4.3.4 for reducing the cost of reference-counting local variables

(Chapter 6.9). Finally, we measure the overhead RC imposes (due to compiling to C and

our special region library) in Chapter 6.10 and approximate the cost of a multi-threaded

reference-counting implementation in Chapter 6.11. We end with a summary of our results

(Chapter 6.12).

6.1 Benchmarks

Our benchmarks, and their respective inputs are:

• cfrac: A program to factor large integers using the continued fraction method. The

original application used explicit reference counting to reclaim storage. We factor

106

4175764634412486014593803028771.

• gröbner : Find the Gröbner’s basis of a set of polynomials. This program was originally

written using malloc and free. The input is nine nine-variable polynomials.

• mudlle: A byte-code compiler for a scheme-like language. The original version of this

program uses unsafe regions. We compile a 500-line file 50 times, a 1700-line file 30

times and a 1000-line file 30 times.

• lcc: Our modified version of the lcc [24] C compiler. The original program also uses

unsafe regions (Hanson’s arenas [32]). The input is a 6000-line C file.

• moss: A software plagiarism detection system, written originally using malloc and

free. The input is 180 student compiler projects (about 10MB).

• tile: Automatically partitions a set of text files into subsections based on frequency

and grouping of words in the text. This program originally used malloc and free.

Two copies of a draft of a 56k character paper [27] are given as input.

• rc: The RC compiler, written with RC’s regions. The input is a 1202 line C file (2179

non-blank lines after preprocessing).

• apache: The Apache web server v1.3.12, originally written with unsafe regions. We

request 2045 pages from the web server. The client requesting the pages runs on

the same machine as apache as performance is otherwise completely dominated by

transmission of pages over the network.

6.2 Region Structure

In this section, we present how each benchmark uses regions. For mudlle, lcc, rc

and apache this is the benchmark’s original region structure; for cfrac, gröbner, moss and

tile it is the region structure we picked when converting these programs to use regions.

In the descriptions of these structures below we will often refer to the example regions

structures presented in Chapter 3.2.9.

The main loop of cfrac is an iterative computation (Chapter 3.2.9) whose main

data structure is a multi-precision integer. Iteration n of this loop needs access to the

integers created in iterations n− 1 and n− 2. In cfrac, every k iterations we create a region

107

for integers allocated in the next k iterations and delete the region created 2k iterations

ago. As we need access to integers created two iterations ago, the minimum value for k is

2. Larger values of k decrease region creation and deletion overhead but increase memory

usage. We found that k = 10 was a good compromise. There are also a few loops in

cfrac which create a region at the start of each loop iteration and delete it at the end (the

phase-based style of Chapter 3.2.9).

The main part of gröbner is a set of two nested loops, and the main data structure

is a polynomial. The inner loop is an iterative computation like cfrac, but only needs access

to polynomials created on the previous iteration. We create a region on every iteration for

the polynomials that will be allocated in the current iteration, and delete the region created

two iterations ago. The outer iteration maintains a region for the polynomials that form

the basis set (the results region) and for the polynomials that are candidates for the basis

set (the candidates region). When the inner loop finds (and returns) a new polynomial P

for the basis set, the outer loop: copies P to the result region and builds a new candidates

set in a new candidates region incorporating P and filtering out now-irrelevant polynomials.

The old candidates region is then deleted. Finally, gröbner also uses a temporary region

(Chapter 3.2.9) for parsing polynomials.

The two main data structures in mudlle are a parse tree representing a file being

compiled, and a fncode structure used to compile a single function. The fncode struc-

ture is relatively complicated containing lists of the function’s variables, of the byte-code

instructions for the function, etc. A region is created for the parse tree, which is freed at

the end of compilation. A region is created for each fncode structure, which is freed when

the corresponding function has been compiled. The mudlle language has nested functions,

the region for the fncode of a function g nested inside a function f is a child region of

the fncode region of f . The fncode region of top-level functions is a child of the parse

tree’s region. Thus the region structure mimics the structure of the file being compiled and

allows parentptr annotations to be used in a natural manner. As in gröbner, mudlle uses

a temporary region during parsing.

There are always exactly three live regions in lcc. The permanent region holds

data that lives for the whole duration of compilation, e.g., the objects representing global

variables. The per-function region, a child of the permanent region, is deleted and recreated

after every function is compiled and holds data necessary to compile a single function, e.g.,

the directed acyclic graph representing a C basic block. The per-statement region, a child

108

of the per-function region, is deleted and recreated after every C statement is compiled and

holds data that is not needed after a single statement has been compiled, e.g., the types of

that statement’s expressions. Both the per-function and per-statement regions are examples

of phase-based computation (Chapter 3.2.9).

A number of different permanent regions are used for different data structures

in moss. By putting different data structures in different regions we express some of the

locality properties of moss: objects in separate regions are less likely to conflict in the cache.

Thus placing infrequently-accessed in a separate region than frequently-accessed objects can

lead to locality improvements. This improvement can be seen in the performance results

and L2 cache misses for moss in Chapter 6.7. In addition to these permanent regions, moss

also builds a hash table for every function in the input programs. This hash-table region

can be deleted at the end of each function (another example of phase-based computation)

though we choose to delete this region every 10 functions to reduce region creation and

deletion overhead.

Each data structure in tile (two hash-tables, a set of five arrays and the partitioning

results) has its own regions. These are deleted at the end of partitioning or when the

results are no longer needed. The size of the five arrays may need to be increased during

partitioning, this is achieved by creating bigger arrays in a new array region, copying the

old array contents and deleting the old array region.

The rc compiler has a similar structure to mudlle: a region for the parse tree for

the file being compiled, and one region per function for all data needed while compiling

that function. The per-function region is a child of the parse tree region and deleted when

that function has been compiled. There are also a few other regions: one for allocating the

structures representing C types and some temporary regions used while parsing C code and

while printing the regular C code that is RC’s output.

In apache there are five main regions: pglobal for permanent data, pchild for

per-server data (this is only different from pglobal when running multiple server threads

which we do not support), plog for logging-related allocations, pconf for configuration-

related allocations and ptrans for per-TCP-connection allocations. The plog and pconf

regions are deleted and recreated when the apache configuration changes, ptrans is created

before a TCP connection is accepted and deleted after it is closed (each server handles

one connection at a time). The plog and pconf regions are children of pglobal, ptrans

is a child of pconf. Each request received by the server gets its own region, which is a

109

child of ptrans. This region is deleted when the request has been fully processed. Some

requests cause the creation of subrequests, which again get their own region (a child of the

creating request’s regions). Subrequests can either complete (and be deleted) before their

parent, or at the same time. In this latter case, we use deleteregion array to delete a

subrequest’s region at the same time as the parent’s region.1 Finally, some apache functions

use temporary or permanent regions.

6.3 Changes to Benchmarks

Except for rc, our benchmarks required changes to use RC’s regions. The changes

fall into the the following categories:

• Regions: The malloc and free based programs were changed to region-based alloca-

tion, using the region structure described above. Code is added to create and delete

the appropriate regions, calls to malloc were replaced by region allocation and calls

to free are removed. Some benchmarks required additional changes to keep track of

when to delete regions, add additional copies, etc.

• Regions: The region-based programs are changed to use RC’s region API. These

changes are straightforward. Some additional changes are also required, e.g., to clear

some pointers before deleting a region or to write rc adjust x functions for unions

containing pointers.

• Deletes: The deletes qualifier must be added to any function that may delete a

region. This is also straightforward (there is a compile-time error if any deletes

qualifiers are forgotten).

• Qualifiers: Some traditional, sameregion and parentptr qualifiers were added to

each benchmark. For some benchmarks, it was sufficient to add these qualifiers to

appropriate types, for others small code changes were also necessary.

• Performance: We made a small number of changes to the benchmarks to improve

performance, e.g., copying global variables to local variables to help qualifier runtime

check elimination (Chapter 5.6).

1apache’s region model implicitly deletes child regions with their parents.

110

Name Lines Changed Regions Deletes Qualifiers Performance Other

cfrac 3792 220 / 216 134 / 134 4 / 0 7 8 67
gröbner 2728 415 / 410 167 / 167 5 / 0 243 0 0
mudlle 4859 300 / 136 135 / 52 81 / 0 84 0 0
lcc 12827 438 / 272 129 / 55 92 / 0 166 51 0
moss 2673 105 / 97 58 / 58 8 / 0 21 18 0
tile 1319 150 / 138 111 / 111 12 / 0 19 8 0
rc 28434
apache 52644 599 / 287 336 / 192 168 / 0 61 13 21

Table 6.1: Complexity of benchmark changes, in number of lines changed.

• Other : Some benchmarks required a few other changes.

Table 6.1 summarises the size of these changes in lines of code, broken down into

the categories above. For Changed (the total number of lines changes), Regions and Deletes

we include two figures: before the / is the number of lines changed while the number after

the / excludes mechanical changes. Mechanical changes are the addition of the deletes

qualifier and, for the programs that were originally region-based, the change to use RC’s

region API. For reference, we include the number of lines in rc. We also gives details on

each benchmark’s non-mechanical changes, by category:

• cfrac: For regions, we must copy solution to the results region. We also add some

sameregion type qualifiers. For performance we avoid taking the address of a local

variable (optimisation of reference counting is not done on variables whose address is

taken). Under other changes we remove cfrac’s original reference counting.

When running cfrac with the Boehm-Weiser conservative garbage collector, we also

disable the original reference counting code.

• gröbner : For regions, we must copy solution to the results region and we use a tempo-

rary region for allocations during polynomial parsing rather than explicitly tracking

allocated objects in an array. We changed the polynomial data structure to use

sameregion pointers internally which required that some objects be region rather

than stack allocated.

• mudlle: For regions we clear some global variables before deleting regions, use subre-

gions and regionof and change the implemented language’s generic value type from

111

void * to unsigned long to avoid storing integers in a pointer type. We add many

sameregion, parentptr and traditional qualifiers, one of which requires a small (6

line) code rewrite.

• lcc: For regions we add some fields to an object to identify which member of a

union is in use, eliminate uses of memset and memcpy, clear some global variables and

object fields before deleting a region and use subregions. We add many sameregion,

parentptr and traditional qualifiers and allocate some arrays in regions rather

than as local or global variables to allow more use of sameregion. For performance

we copy some global variables to locals to help qualifier runtime check elimination,

remove clears or fields and local variables which are made unnecessary by RC’s implicit

initialisations and allocate some arrays in a region rather than on the stack.

• moss: We add some sameregion and traditional type qualifiers. For performance

we copy some global variables to locals and use regionof to help qualifier runtime

check elimination and we recreate a hash table’s region every 10 functions rather than

every function to reduce region creation and deletion overhead.

• tile: We add some sameregion and traditional type qualifiers. For performance we

copy some global variables to locals and use regionof to help qualifier runtime check

elimination.

• apache: For regions we must change apache’s growable array abstraction to incorpo-

rate type information, clear a few variables, replace the ‘clear a region’ function with a

‘destroy region and create new region’ function, eliminate uses of memcpy and slightly

delay deleting some regions until all pointers to these regions have been overwritten.

We add many sameregion, parentptr and traditional qualifiers. For performance

we remove memset’s rendered unnecessary by RC’s implicit initialisations and allocate

an array with alloca rather than on the stack. Under other changes we work around

the limitation on strtol (see Appendix A), move a structure declaration out of a

function (as required by RC), and make an initialised local array static.

There is one significant limitation in our port of apache to RC: the support for timeouts

does not work as it uses longjmp which does not work in RC (see Chapter 3.2.5).

112

6.4 Allocators and Test Environment

We compare our RC-based programs with two other memory managers. The

first is Doug Lea’s malloc/free replacement library v2.7.02. This is an improved version of

the allocator used in some previous surveys of memory allocation costs [21, 56]. In those

surveys this allocator exhibited good performance overall. In particular it has much better

performance than Sun’s default malloc library. The second allocator is the Boehm-Weiser

conservative garbage collector [13] v6.03.

All benchmarks are compiled with gcc v2.95.2 and run on a 300MHz UltraSPARC-

II with 128MB of memory and 512kB of L2 cache.

In the tables and figures below, we systematically use “RC” for RC with the

standard options, “lea” for Doug Lea’s malloc/free implementation and “bwgc” for the

Boehm-Weiser conservative garbage collector. As in the implementation chapter, we will

say “local variable” when we mean “local variable whose address is not taken”. We will

also use “pointer-free object (or page, or block)” as a shorthand for “object (or page, or

block) containing only qualified pointers or non-pointer data”.

Except where otherwise noted, all results below (except those marked as “lea” or

“bwgc”) are based on the region-based version of each application compiled by RC with the

standard options. All execution times are wall-clock times and based on the best of five

runs.

6.5 Benchmark Behaviour

The memory allocation characteristics of our benchmarks are summarised in Ta-

ble 6.2 and Figures 6.1 and 6.2. The table shows the total number of bytes, objects and

regions allocated, and the rate of these allocations. Figure 6.1 shows the distribution of

object sizes in each application: the “32” column shows the number of allocated objects

whose size is 32 bytes or less, the “128” column is for objects between 33 and 128 bytes,

the “512” column for objects between 129 and 512 bytes and the “> 512” column for ob-

jects greater than 512 bytes. Figure 6.2 presents the same data, except that the height of

each column is the number of bytes allocated for objects of that size, rather than the total

number of objects.

2Obtainable at ftp://g.oswego.edu/pub/misc/malloc.c
3Obtainable at http://www.hpl.hp.com/personal/Hans Boehm/gc

113

Name kB Allocated Objects Allocated Regions Allocated
Total Rate Total Rate Total Rate

cfrac 62987 10654/s 3812424 644861/s 23382 3955/s
grobner 327272 32451/s 5796711 574785/s 73435 7281/s
mudlle 27145 5874/s 1594630 345083/s 6729 1456/s
lcc 56852 7858/s 991527 137064/s 50878 7033/s
moss 9317 1288/s 554133 76643/s 1899 262/s
tile 381 72/s 10465 1992/s 12 2/s
rc 5703 2036/s 88159 31485/s 61 21/s
apache 31467 4009/s 175972 22419/s 4347 553/s

Table 6.2: Memory Allocation Rates

32 128 512 >512
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
6

cfrac

ob
je

ct
s

32 128 512 >512
0

0.5

1

1.5

2

2.5

3

3.5

x 10
6
grobner

32 128 512 >512
0

2

4

6

8

10

12

14

16

x 10
5

mudlle

32 128 512 >512
0

1

2

3

4

5

6

7

8

9

x 10
5

lcc

32 128 512 >512
0

1

2

3

4

5

6

x 10
5

moss

32 128 512 >512
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
tile

32 128 512 >512
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

rc

32 128 512 >512
0

1

2

3

4

5

6

7

x 10
4
apache

Figure 6.1: Objects allocated, distributed by object size

32 128 512 >512
0

1

2

3

4

5

6

7

x 10
4

cfrac

kB
yt

es

32 128 512 >512
0

2

4

6

8

10

12

x 10
4
grobner

32 128 512 >512
0

0.5

1

1.5

2

2.5

3

x 10
4

mudlle

32 128 512 >512
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
4

lcc

32 128 512 >512
0

1000

2000

3000

4000

5000

6000

7000
moss

32 128 512 >512
0

20

40

60

80

100

120

140
tile

32 128 512 >512
0

500

1000

1500

2000

2500

3000
rc

32 128 512 >512
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
apache

Figure 6.2: Bytes allocated, distributed by object size

114

Name Blocks Allocated Avg. Objects Avg. kBytes.
Total Rate 8kB Pointer-free per Region per Region

cfrac 23431 3963/s 100.0% 100.0% 163 2.7
grobner 87010 8627/s 90.6% 100.0% 78 4.5
mudlle 15424 3337/s 100.0% 99.1% 236 4.0
lcc 58995 8155/s 100.0% 55.0% 19 1.1
moss 4169 576/s 100.0% 86.5% 291 4.3
tile 49 9/s 91.8% 100.0% 871 27.8
rc 815 291/s 99.4% 37.8% 1444 93.2
apache 10748 1369/s 81.0% 59.3% 37 7.2

Table 6.3: Region Statistics

These results show that all programs, except tile, are allocation intensive, and all

programs, except tile and rc, allocate a lot of regions. However the rate for allocating regions

is much lower than for allocating objects. The two figures show that in all benchmarks most

allocated objects are small, however for half the benchmarks (gröbner, tile, rc, apache) a

significant fraction of the bytes are allocated in medium to large objects (> 128 bytes).

Table 6.3 gives some statistics on regions and the underlying region implemen-

tation. We report the number of blocks allocated (see Chapter 4.2.1), the rate of these

allocations, the percentage of blocks allocated that are 8kB (a single page) and the percent-

age of blocks allocated that are for pointer-free objects. We also report the average number

of objects per region and the average size of a region.

We observe that the rate of block allocation (Table 6.3) is much lower than the

rate of object allocation (Table 6.2), between 16x lower for apache to 221x lower for tile.

This is significant as block allocation is expensive (comparable to a malloc call) and object

allocation is cheap as long as no new block is needed. The ratio of block to object allocations

is lowest for the programs that have on average few objects per region (lcc and apache).

Table 6.3 also confirms that most allocated blocks are single 8kB pages (between

81% and 100% of all blocks allocated). This justifies our special support in the region

allocator for allocating these blocks (the single blocks list described in Chapter 4.2.1).

The percentage of pointer-free pages varies substantially, from 37.8% for rc to a 100% for

cfrac and gröbner.

Table 6.4 gives details on the number of writes to pointers (“Total”) and the

“Rate” of these writes, for local variables and for all other pointer writes. These figures

115

Name Local Variable Writes Other Writes
Total Rate Total Rate

cfrac 76384647 12920271/s 778300 131647/s
grobner 89601466 8884627/s 6465365 641087/s
mudlle 41758171 9036609/s 14308483 3096404/s
lcc 45558781 6297868/s 9935789 1373484/s
moss 43074278 5957714/s 16213087 2242473/s
tile 4302005 819117/s 192023 36561/s
rc 31047240 11088300/s 1870773 668133/s
apache 4481649 570983/s 738990 94150/s

Table 6.4: Pointer write statistics

confirm that writes to local variables are the most important (their lowest percentage is

73% for lcc). Chapter 6.9 shows that we can avoid reference count operations for most of

these local variable writes.

We see that a benchmark’s rate of object allocation is not correlated with the rate

at which it writes pointers. For instance, cfrac writes a pointer every 4.8 object allocations

while rc allocates an object every 21.2 pointer writes.

6.6 Memory Usage

Table 6.5 shows the maximum memory usage for four allocators: our three stan-

dard allocators, “RC”, “lea” and “bwgc”, and “p” which is RC-pairs (Chapter 4.3.7). This

table has two parts for the two versions of each benchmark (original and region-based) The

“user” column is the maximum amount of memory in use at any time, from the application

writer’s perspective. For the region-based version we also include the maximum number

of regions in existence at any time. We report the amount of memory requested from the

operating by each allocator to satisfy the application’s memory allocations, and the corre-

sponding overhead (requested
user − 1). Figure 6.3 presents the same data in graphical form

for easier comparison.

Excepting apache, RC has a memory usage and overhead which are comparable

with Doug Lea’s malloc/free implementation. The large memory overhead for RC in apache

is due to the large number of simultaneous regions live (25): we examined these 25 regions

and found that most needed a pointer-free and a not-pointer-free page, so take at least

116

region-based original
Name user RC p user lea bwgc

cfrac 123(4) 136 / 11% 136 / 11% 101 112 / 11% 880 / 772%
grobner 87(4) 148 / 71% 155 / 79% 83 101 / 22% 488 / 489%
mudlle 283(12) 399 / 41% 341 / 21% 272 365 / 34% 1576 / 478%
lcc 4370(3) 5096 / 17% 4581 / 5% 4364 5187 / 19% 36392 / 734%
moss 2366(7) 2775 / 17% 2414 / 2% 2356 2998 / 27% 5008 / 113%
tile 191(6) 240 / 26% 241 / 26% 172 204 / 19% 264 / 54%
rc 4647(6) 5053 / 9% 4758 / 2% 4648 4946 / 6% 6680 / 44%
apache 108(25) 437 / 305% 295 / 174% 98 111 / 14% 360 / 267%

Table 6.5: Maximum Memory Usage (in kB) and Overheads

lea bwgc RC p
0

100

200

300

400

500

600

700

800

900

cfrac

m
ax

 m
em

or
y

(k
B

)

lea bwgc RC p
0

50

100

150

200

250

300

350

400

450

500

grobner

lea bwgc RC p
0

200

400

600

800

1000

1200

1400

1600

mudlle

lea bwgc RC p
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4 lcc

lea bwgc RC p
0

1000

2000

3000

4000

5000

6000

moss

lea bwgc RC p
0

50

100

150

200

250

300

tile

lea bwgc RC p
0

1000

2000

3000

4000

5000

6000

7000

rc

lea bwgc RC p
0

50

100

150

200

250

300

350

400

450

apache
user
requested − user

Figure 6.3: Maximum Memory Usage (in kB) and Overheads

16kB of memory. Thus the minimum amount of memory apache can use is approximately

400kB. This drawback of our region implementation only affects programs which use a

large number of regions but only need little memory. On all benchmarks except apache,

the Boehm-Weiser conservative collector uses most memory, in some cases (cfrac, gröbner,

mudlle, lcc) by a wide margin.

RC-pairs sometimes uses substantially less memory than RC: for instance, 13%

less for moss and 32% less for apache. In the case of apache this is due to the large number

of small regions: with RC-pairs these regions take only 8kB rather than 16kB as we do

not have separate pointer-free pages. Even with this improvement, the memory usage of

RC-pairs is still high compared to Doug Lea’s malloc/free implementation.

117

C@ lea bwgc norc RC

0

1

2

3

4

5

6

7

8

9

10

cfrac
tim

e(
s)

C@ lea bwgc norc RC

0

2

4

6

8

10

12

14

16

grobner

C@ lea bwgc norc RC

0

1

2

3

4

5

6

mudlle

C@ lea bwgc norc RC

0

2

4

6

8

10

12

lcc

C@ lea bwgc norc RC

0

2

4

6

8

10

12

moss

C@ lea bwgc norc RC

0

1

2

3

4

5

6

tile

C@ lea bwgc norc RC

0

0.5

1

1.5

2

2.5

3

rc

C@ lea bwgc norc RC

0

1

2

3

4

5

6

7

8

9

apache

Figure 6.4: Execution time

6.7 Performance

In this section, we compare the performance of RC with our old system C@, Doug

Lea’s malloc/free and the Boehm-Weiser conservative garbage collector (Chapter 6.7.1)

and with our alternative reference-counting schemes (Chapter 6.7.2). We also measure

the overhead of reference-counting and show that compared to C@ we have reduced this

overhead both in absolute time and percentage of runtime (Chapter 6.7.3).

These results, and the results in the next sections show the occasional performance

anomaly. For instance, gröbner is faster with reference-counting enabled than without.

In rc, disabling qualifier runtime checks increases execution time (see Figure 6.10). The

code changes when compiling an application with different options (e.g., with or without

reference-counting) change the code size and alignment, and the pattern of data accesses.

This can lead to, for instance, changes in cache misses with small, unpredictable effects on

performance. As an example, gröbner with reference-counting disabled has 1 million more

L2 cache misses than with reference-counting enabled. At 230ns per cache miss on our test

machine, this accounts for .23s of the .29s time difference between these two versions of

gröbner.

6.7.1 Performance vs Other Allocation Techniques

The performance of our three standard allocators, of our old language C@, and of

RC with reference-counting disabled (“norc”) is presented in Figure 6.4. We did not port

rc or apache to C@.

On these benchmarks, RC is always faster than our old system C@. This improve-

ment is due both to a C compiler (gcc) that produces better code than lcc [24] (on which

118

lea bwgc norc
0

1

2

3

4

5

6

7

8

cfrac
tim

e(
s)

lea bwgc norc
0

2

4

6

8

10

12

14

16

grobner

lea bwgc norc
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

mudlle

lea bwgc norc
0

1

2

3

4

5

6

7

8

9

10

lcc

lea bwgc norc
0

2

4

6

8

10

12

moss

lea bwgc norc
0

1

2

3

4

5

6

tile

lea bwgc norc
0

0.5

1

1.5

2

2.5

3

rc

lea bwgc norc
0

1

2

3

4

5

6

7

8

9

apache

app
mem

Figure 6.5: Execution time, showing time spent in memory management

lea bwgc RC
0

2

4

6

8

10

12

14

x 10
5

cfrac

L2
 m

is
se

s

lea bwgc RC
0

1

2

3

4

5

6

7

8

9

10

x 10
6
grobner

lea bwgc RC
0

2

4

6

8

10

12

14

16

x 10
5

mudlle

lea bwgc RC
0

2

4

6

8

10

12

14

x 10
6

lcc

lea bwgc RC
0

2

4

6

8

10

12

14

16

x 10
6

moss

lea bwgc RC
0

1

2

3

4

5

6

7

8

9

x 10
6

tile

lea bwgc RC
0

0.5

1

1.5

2

2.5

3

x 10
6

rc

lea bwgc RC
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
6
apache

Figure 6.6: L2 cache misses

C@ is based) and to a reduced reference count overhead in RC (see Chapter 6.7.3). RC is

competitive with malloc and free on all benchmarks, from 6% slower on rc to 48% faster

on moss. RC is faster (up to 55% on gröbner) than the Boehm-Weiser conservative garbage

collectors on all benchmarks except tile (2% slower).

We also show, in Figure 6.5, the breakdown between time spent in memory al-

location (“mem”) and in the rest of the application (“app”). We measure the memory

management time by instrumenting the code using the UltraSPARC’s cycle counters. This

instrumentation slows down the code a little, and the code changes lead to small perfor-

mance changes, hence the execution times are not perfectly consistent between the two

figures.

These figures show that the cost of memory allocation is always lowest for regions,

and always highest for conservative garbage collection. These figures also show that the

Boehm-Weiser conservative garbage collector and RC gain some of their performance in

cfrac because they can disable that application’s own hand-written reference-counting code.

119

xpp RC sr page

5.65

5.7

5.75

5.8

5.85

5.9

5.95

6

6.05

6.1

cfrac
tim

e(
s)

xpp RC sr page

9.6

9.7

9.8

9.9

10

10.1

10.2

10.3

10.4

10.5

10.6

grobner

xpp RC sr page

4.3

4.4

4.5

4.6

4.7

4.8

mudlle

xpp RC sr page

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

lcc

xpp RC sr page

6.9

7

7.1

7.2

7.3

7.4

moss

xpp RC sr page

5

5.05

5.1

5.15

5.2

5.25

5.3

5.35

5.4

tile

xpp RC sr page

2.65

2.7

2.75

2.8

2.85

2.9

2.95

rc

xpp RC sr page

7.6

7.8

8

8.2

8.4

8.6

apache

Figure 6.7: Execution time with alternative reference-counting (non-zero time origin)

This shows up as a lower application time. Similarly, in moss we see that RC spends less

time in the application as well as in memory allocation.

In Figure 6.6, we show the number of L2 cache misses for each of the allocators

and applications. This confirms that moss has better locality with RC. We also see smaller

locality improvements for RC with mudlle and lcc, which explains some of the improved

application time from Figure 6.5. We also see that applications compiled with the Boehm-

Weiser have the most cache misses (except on moss), which is presumably due to L2 misses

during garbage collection.

6.7.2 Performance of Alternative Reference-counting Implementations

Figure 6.7 shows the performance of the variations on standard reference counting

presented in Chapter 4.3.6. The excluding parent pointers scheme is “xpp”, the include

same-region references scheme is “sr”, “page” is the version of include same-region refer-

ences that keeps a reference count per page.

The “xpp” approach is always slower (up to 8% on apache, but 3% or less on

the other benchmarks) than the standard approach. Thus it is only worthwhile in an

implementation of regions where the test that a region and its children can be deleted

must be efficient. The other two approaches to reference-counting from Figure 6.7 (“sr”

and “page”) are either slightly faster (up to to 3%) or slightly slower (up to 6%) than the

standard approach. The “page” approach takes memory for the per-page reference counts

and produces a clear performance benefit for mudlle only.

The performance of RC-pairs (Chapter 4.3.7) is presented in Figure 6.8. The “p”

column represents the split array approach, “psr” is the split array approach extended to

120

RC p psr pa

5.7

5.8

5.9

6

6.1

6.2

cfrac
tim

e(
s)

RC p psr pa

9.5

9.6

9.7

9.8

9.9

10

10.1

10.2

10.3

grobner

RC p psr pa

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

4.75

4.8

mudlle

RC p psr pa

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

lcc

RC p psr pa

6.4

6.6

6.8

7

7.2

7.4

moss

RC p psr pa

5

5.05

5.1

5.15

5.2

5.25

5.3

5.35

5.4

tile

RC p psr pa

2.7

2.75

2.8

2.85

2.9

rc

RC p psr pa

7.5

8

8.5

9

apache

Figure 6.8: Execution time with RC-pairs (non-zero time origin)

include same-region references. The “pa” column represents the flat array approach.

There is little performance difference between all these pair-based approaches and

the standard reference-counting scheme (2% slower to 3% faster) on all benchmarks except

moss and apache. For moss, both “psr” and “pa” are 8% faster than moss compiled with

reference-counting disabled, and moss executes very few reference-count updates per second

(see the “rcupdate” column of Table 6.9 below). We thus do not attribute this speedup to

improved reference-counting performance. The situation is similar for apache, except that

the RC-pairs approach is slower rather than faster.

6.7.3 Reference-counting Overhead

Table 6.6 shows the reference counting cost for C@ and RC. This cost is presented

as absolute time in seconds, and as a percentage of execution time. These figures are

obtained by running our benchmarks with reference-counting enabled and disabled and

subtracting the execution times. For RC, we also show time spent removing references from

deleted regions (“Region unscan”). This last cost is measured using the UltraSPARC’s

cycle counters. The largest reference counting overhead is for lcc at 12.6% of execution

time. The region unscan accounts for 2% or less of execution time. This table also shows

that the better performance of RC over C@ is due not only to a better base compiler (gcc

vs lcc) but also to a reduction in the reference counting overhead (which is not affected

by the C compiler used). As we discussed earlier, the negative reference-counting time for

gröbner is mostly due to less L2 cache misses when reference-counting is enabled.

121

Name C@ RC Region
(s) (%) (s) (%) unscan (s)

cfrac 0.52 5.8% 0.02 0.4% 0.01
grobner 1.13 7.3% -0.29 -2.9% 0.02
mudlle 0.69 12.0% 0.38 8.3% 0.01
lcc 1.52 14.7% 0.91 12.6% 0.12
moss 0.04 0.6% 0.04 0.6% 0.01
tile 0.01 0.1% -0.01 -0.2% < 0.01
rc 0.19 6.7% < 0.01
apache 0.69 8.8% 0.12

Table 6.6: Reference counting overhead in RC and C@

Name Number of % safe
assigns assigns

cfrac 12 50.0%
grobner 105 80.0%
mudlle 569 88.0%
lcc 300 32.7%
moss 55 83.6%
tile 43 83.7%
rc 350 12.3%
apache 177 30.5%

Table 6.7: sameregion, parentptr and traditional: static statistics

6.8 Qualifiers

In this section, we will use the term static pointer writes to mean the number of

assignment statements of pointer type in a benchmark’s source code, and runtime pointer

writes for the number of assignments executed by a benchmark on its test input. In

both cases, we exclude writes to local variables. We refer to the qualifier-runtime-check-

elimination system of Chapter 5.6 as the check-elimination system.

Table 6.7 shows the number of static pointer writes that assign a qualified type.

The second column, “% safe” is the percentage of these writes for which our check-elimination

system can eliminate the runtime check. Except for rc, we can remove a substantial fraction

(30%+) of runtime checks from the generated code. For gröbner, mudlle, moss and tile we

eliminate more than 80% of the checks.

Table 6.8 shows the percentage of runtime pointer writes that were of qualified

types. These percentages are then broken down for each of the three qualifiers. We see that

122

Name Qualified sameregion parentptr traditional

cfrac 0.7% 0.7% 0.0% 0.0%
grobner 98.0% 98.0% 0.0% 0.0%
mudlle 81.9% 32.5% 2.1% 47.3%
lcc 73.8% 49.2% 16.4% 8.2%
moss 99.4% 5.4% 0.0% 94.0%
tile 100.0% 7.0% 0.0% 93.0%
rc 35.2% 31.7% 2.4% 1.2%
apache 38.9% 16.0% 9.3% 13.6%

Table 6.8: sameregion, parentptr and traditional: dynamic statistics

cfrac grobner mudlle lcc moss tile rc apache
0

20

40

60

80

100

%
 o

f a
ll

no
n−

lo
ca

l a
ss

ig
nm

en
ts

safe
checked

Figure 6.9: Effectiveness of qualifiers and qualifier check removal

different qualifiers are important in different benchmarks.

Figure 6.9 breaks the runtime pointer writes in our benchmarks into three cat-

egories. The “safe” category is the percentage of runtime pointers writes that were of

qualified type and shown to be statically safe by our check-elimination system. These re-

quire no runtime work. The next category, “checked”, is the percentage of runtime pointer

writes that were of qualified type and that required a runtime check. The final category is

the difference between the top of the bar and 100% is the percentage of runtime pointer

writes that required a reference count update. The goal of our qualifiers is to reduce this

percentage; the goal of our check-elimination system is to reduce the number of “checked”

pointer writes.

Table 6.9 presents the same three categories in pointer writes per second. We call

the final category “rcupdate”. The overhead of reference counting is primarily dependent

on the rate of reference-count operations, and secondarily on the rate of runtime checks.

From the “rcupdate” rate, we can expect that mudlle, lcc and rc will have the

highest reference-counting overhead. This is confirmed by the reference-counting cost figures

123

Name Writes rcupdate checked safe

cfrac 131647/s 130711/s 737/s 198/s
grobner 641087/s 12756/s 7784/s 620545/s
mudlle 3096404/s 559623/s 257918/s 2278862/s
lcc 1373484/s 360471/s 743974/s 269039/s
moss 2242473/s 12421/s 6084/s 2223967/s
tile 36561/s 8/s 1/s 36551/s
rc 668133/s 432727/s 43279/s 192126/s
apache 94150/s 57488/s 23196/s 13465/s

Table 6.9: Reference count and runtime check rates

nq qs RC nc

5.6

5.65

5.7

5.75

5.8

5.85

5.9

5.95

6

6.05

6.1

cfrac

tim
e(

s)

nq qs RC nc

9.6

9.8

10

10.2

10.4

10.6

10.8

11

11.2

grobner

nq qs RC nc

4.4

4.6

4.8

5

5.2

5.4

5.6

mudlle

nq qs RC nc

6.6

6.8

7

7.2

7.4

7.6

7.8

8

lcc

nq qs RC nc

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

moss

nq qs RC nc

5

5.05

5.1

5.15

5.2

5.25

5.3

5.35

5.4

tile

nq qs RC nc

2.7

2.75

2.8

2.85

2.9

rc

nq qs RC nc

7.6

7.8

8

8.2

8.4

8.6

apache

Figure 6.10: Execution time with sameregion, parentptr and traditional (non-zero time
origin)

of Table 6.6.

The effects on execution time of sameregion, parentptr and traditional anno-

tations and of our check-elimination system are shown in Figure 6.10. In the “nq” column,

the annotations are ignored; in “qs” the annotations are used and checked at runtime; in

“RC” the check-elimination system has removed provably safe runtime checks; in “nc” all

runtime checks are (unsafely) removed (“nc” thus bounds the maximum improvement our

check-elimination system can provide).

The rate of pointer-writes (“Writes” column in Table 6.9) is high for gröbner and

moss, but most of these writes are of qualified pointers that require no runtime check. With-

out qualifiers, the reference-counting overhead of these benchmarks would be significant, as

shown by the “nq” column of Figure 6.10.

From Figures 6.10 and 6.9 we conclude that our type annotations are impor-

tant to the performance of gröbner, mudlle, lcc, moss and to a lesser extent rc. The

124

check-elimination system provides useful reductions in reference count overhead in gröbner,

mudlle, lcc and moss. For instance, without any qualifiers the reference count overhead of

lcc would be 20.4% instead of 12.6%, and the overhead of mudlle would be 22.3% instead of

8.3%. The anomalous performance results for rc and apache prevent any useful conclusion.

The programs (gröbner, mudlle, tile, moss) where the percentage of qualified as-

signments is highest are dominated by one or two data structures which use qualified types

for their internal pointers (large integers in gröbner, an instruction list in mudlle and the

input buffer used by code produced by the flex lexical analyser generator in tile, moss and

mudlle). In cfrac essentially all pointer assignments are of pointers to local variables used

for by-reference parameters in functions with signatures such as

int *pdivmod(int *u, int *v, int **qp, int **rp)

The effectiveness of our check-elimination system in verifying the safety assign-

ments to sameregion and traditional pointers, and hence eliminating runtime checks, is

also variable. Most checks remain in lcc, while virtually all are eliminated in gröbner, tile

and moss. We illustrate here, using a simple linked list type, the kinds of code whose safety

our system successfully or unsuccessfully verifies. The examples will assume the following

type and local variable declarations:

struct rlist {

struct rlist *sameregion next;

struct finfo *sameregion data;

} *x, *y;

region r;

struct rlist **objects[100];

A simple idiom that is successfully verified is the creation of the contents of x after

x itself exists:

x = ralloc(r, ...);

x->next = ralloc(regionof(x), ...);

Similar situations often arise with imperative data structures such as hash tables (as in

moss). The large integers in gröbner also follow this pattern.

Our check-elimination system remains successful on fairly complex loops as long

as all the variables are locals or function parameters. For instance, we can successfully

verify all the assignments in Figure 1.1. A more elaborate version of this loop (involving

inter-procedural analysis) is found in moss and is also verified.

125

The sameregion, parentptr and traditional annotations allow verification of

some code that accesses data from the heap (or from global variables), e.g.:

x = ralloc(regionof(y), ...);

x->next = y->next;

The traditional annotations in the code generated by the flex lexical analyser generator

used by tile, moss and mudlle are more complex examples (also involving inter-procedural

analysis) of this.

Other constructions do not work so well. Nothing is known about objects accessed

from arbitrary arrays, e.g.:

x = ralloc(r, ...);

x->next = objects[23];

The parse stack used in the code generated by the bison parser generator is like the objects

array and prevents verification of the construction of parse trees in mudlle and rc (which

use sameregion pointers).

Most of the benchmarks allocate memory in a region stored in a global variable,

partly as an artifact of converting the programs to use regions (adding a region argument

to every function would have been painful), and partly as a result of using bison generated

parsers (the parsing actions only have access to the parsing state and to global variables).

Our region type system does not represent the region of global variables, so verification of

annotations often fails in these programs. Where possible, we changed these programs to

keep regions in local variables, or used regionof to find the appropriate region in which to

allocate objects.

The final case which our system does not handle well is hand-written constructors

such as:

rlist *new_rlist(region r, rlist *next)

{

rlist *new = ralloc(r, ...);

new->next = next;

return new;

}

To verify the assignment to next, our system must verify that at every call to new rlist,

next is null or in the same region as r. This is often not possible, e.g., in rc where these

functions are called from a bison generated parser. It is not possible to apply a technique

similar to the first idiom and replace the allocation with:

126

rlist *new = ralloc(regionof(next), ...);

because next may be null.4

6.9 Local Variables

Table 6.4 shows that writes to local variables are the most frequent, and therefore

most important for reference-counting performance. Table 6.10 presents the effectiveness of

various strategies for eliminating reference count operations for these writes to local vari-

ables. The results are presented as the rate of reference count operations. The assignment

scheme of Chapter 4.3.4 is “asgn”, “RC” uses the default function scheme, and “opt” is the

optimal scheme. The second part of the table (“ndopt” and “nda” columns) is discussed

below.

The effects of these three schemes on execution time are shown in Figure 6.11. We

include a “none” bar which shows the performance of our benchmarks when references from

local variables are ignored. The “none” bar is a lower-bound on how much we can improve

reference-count performance for local variables. We observe that the performance of “RC”

and “opt” is nearly identical, and close to “none” on all benchmarks. The assignment

scheme is noticeably worse. Thus the function scheme is clearly the best solution for

reference-counting local variables as it is both faster and easier to implement than the

optimal scheme. We again notice a few anomalous results (“none” costing more than any

of the other schemes, “opt” slower than “asgn” and “RC” for rc).

The need for the deletes qualifier on functions can be obviated if we assume

that all functions may delete a region. However, this significantly increases the cost of

reference counting local variables as shown by Figure 6.12. Here we show the time without

deletes qualifiers for the assignment scheme (“nda”) and the optimal scheme (“ndopt”).

For reference, we include the standard “RC” time. The rate of local variable reference count

operations for “ndopt” and “nda” are both given in Table 6.10.

These results show that the deletes qualifier is necessary for good performance:

even with our best scheme (“ndopt”), the overhead of reference-counting can be as high as

25% (lcc). The highest overhead with the deletes qualifier is 12.6% (lcc again).

4In a new language it would be possible to have a separate null value for each region, which would allow
this idiom to work. It is not clear whether this would be otherwise desirable.

127

Name asgn RC opt nda ndopt

cfrac 476988/s 60814/s 22419/s 12920271/s 2660809/s
grobner 370487/s 14346/s 7390/s 8884627/s 1915792/s
mudlle 372861/s 196954/s 148357/s 9036609/s 2769986/s
lcc 233677/s 59634/s 39607/s 6297868/s 2288225/s
moss 1896163/s 5314/s 39/s 5957714/s 379510/s
tile 9422/s 2/s 1/s 819117/s 390507/s
rc 59235/s 2758/s 2730/s 11088300/s 1359263/s
apache 71451/s 17109/s 10258/s 570983/s 278673/s

Table 6.10: Local variable reference count operation rates

asgn RC opt none

5.6

5.7

5.8

5.9

6

6.1

6.2

cfrac

tim
e(

s)

asgn RC opt none

9.6

9.8

10

10.2

10.4

10.6

grobner

asgn RC opt none

4.3

4.4

4.5

4.6

4.7

4.8

mudlle

asgn RC opt none

6.9

7

7.1

7.2

7.3

7.4

7.5

lcc

asgn RC opt none

7

7.2

7.4

7.6

7.8

8

moss

asgn RC opt none

5

5.05

5.1

5.15

5.2

5.25

5.3

5.35

5.4

tile

asgn RC opt none

2.7

2.75

2.8

2.85

2.9

rc

asgn RC opt none

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

apache

Figure 6.11: Cost of reference-counting local variables (non-zero time origin)

nda ndopt RC

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

cfrac

tim
e(

s)

nda ndopt RC

10

11

12

13

14

15

16

grobner

nda ndopt RC

4.5

5

5.5

6

6.5

7

mudlle

nda ndopt RC

7

7.5

8

8.5

9

9.5

10

10.5

lcc

nda ndopt RC

7

7.5

8

8.5

9

moss

nda ndopt RC

5

5.1

5.2

5.3

5.4

5.5

5.6

tile

nda ndopt RC

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

rc

nda ndopt RC

7.6

7.8

8

8.2

8.4

8.6

8.8

apache

Figure 6.12: Cost of not using deletes qualifier (non-zero time origin)

128

base rclib norc

5.55

5.6

5.65

5.7

5.75

5.8

5.85

5.9

5.95

6

6.05

cfrac
tim

e(
s)

base rclib norc
9.8

9.9

10

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

grobner

base rclib norc

4

4.05

4.1

4.15

4.2

4.25

4.3

4.35

4.4

mudlle

base rclib norc

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

lcc

base rclib norc

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

moss

base rclib norc

4.95

5

5.05

5.1

5.15

5.2

5.25

5.3

5.35

5.4

tile

base rclib norc

2.45

2.5

2.55

2.6

2.65

2.7

rc

base rclib norc
6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

apache

Figure 6.13: Other RC overheads (non-zero time origin)

6.10 Other Overheads

There are two further costs to using RC beyond reference counting: the C code

output by RC has small changes which can affect performance; using separate pointer-

free blocks increases memory usage and affects performance. Figure 6.13 shows these two

costs: “base” is the runtime when each application is compiled with gcc (as described in

Chapter 3.2.7) and a region library that does not use separate blocks for pointer-free objects;

“rclib” is the runtime when compiled with gcc and using the standard region library; “norc”

is the runtime when compiled with RC and reference-counting disabled.

The cost of using RC and it’s region library, with reference-counting disabled, is

5% (on moss), but mostly around 1-2%. The cost in memory usage of RC can be seen in

Chapter 6.6. The memory usage of unsafe regions which do not use separate blocks for

pointer-free objects is the same as that of RC-pairs. Thus we can see the cost in memory

of using RC by comparing the “p” and “RC” columns in Figure 6.3 and Table 6.5. As we

saw in Chapter 6.6, this overhead can be significant.

6.11 Atomic Swaps

To get an idea of the cost of reference-counting for a multi-threaded system, we

replaced the memory writes for unqualified pointers in our benchmarks by the UltraSPARC

swap instruction which is atomic. This change approximates the cost of the reference-count

operation of Figure 4.9. The effect of this change on execution time are shown in Figure 6.14.

The highest overhead is 10% for lcc, and the results for apache are anomalous.

129

RC swap
0

1

2

3

4

5

6

7

cfrac
tim

e(
s)

RC swap
0

2

4

6

8

10

12

grobner

RC swap
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

mudlle

RC swap
0

1

2

3

4

5

6

7

8

lcc

RC swap
0

1

2

3

4

5

6

7

8

moss

RC swap
0

1

2

3

4

5

6

tile

RC swap
0

0.5

1

1.5

2

2.5

3

rc

RC swap
0

1

2

3

4

5

6

7

8

apache

Figure 6.14: Overhead of using atomic swap for pointer writes

naive RC norc
0

2

4

6

8

10

12

cfrac

tim
e(

s)

naive RC norc
0

2

4

6

8

10

12

14

16

18

grobner

naive RC norc
0

1

2

3

4

5

6

7

8

9

mudlle

naive RC norc
0

2

4

6

8

10

12

lcc

naive RC norc
0

2

4

6

8

10

12

moss

naive RC norc
0

1

2

3

4

5

6

tile

naive RC norc
0

1

2

3

4

5

6

rc

naive RC norc
0

1

2

3

4

5

6

7

8

9

apache

Figure 6.15: RC vs näıve reference-counting

6.12 Summary

In summary, the performance of RC is good. On all benchmarks, RC is from 6%

slower to 55% faster than either Doug Lea’s high-quality malloc/free implementation or

the Boehm-Weiser conservative garbage collector. Memory usage is generally good, though

programs like apache with many small regions pay a higher memory overhead. This overhead

could be reduced by using pages smaller than 8kB.

On all benchmarks except cfrac, our type qualifiers capture a substantial fraction

of non-local pointer assignments (from 35% to 99.98%). Again excluding cfrac, our qualifier-

runtime-check-elimination system is effective at eliminating runtime checks for these quali-

fiers (between 37% and 99.99% of checks eliminated).

We investigated several variations on reference-counting: none had compelling

performance advantages, though keeping reference-counts between pairs of regions does

significantly reduce memory usage on some benchmarks (e.g., moss and apache). This

improvement comes at the cost of a reference-counting scheme that does not scale to a large

130

number of regions n as it requires space proportional to n2 to store the reference counts.

Finally, the deletes qualifier is necessary to keep the cost of reference-counting for local

variables low.

To conclude, Figure 6.15 shows the performance difference between a “näıve” re-

gion reference-counting implementation (no qualifiers, a reference-count operation on every

pointer write) and RC. The reference-count overhead for “näıve” is as high as 51.4% (on

mudlle), compared to a maximum of 12.6% for RC (on lcc).

131

Chapter 7

Conclusion

In summary, the performance of regions when compared to malloc/free and con-

servative garbage collection is good:

• On most applications with a small memory footprint (a few 100kB), unsafe regions

tend to use somewhat more memory than malloc/free (from 6% less to 47% more).

On one application (the apache web server) our region library uses substantially more

memory (nearly 2.7x (184kB) more). This is due to the number of regions used

simultaneously in apache and the large minimum size of a region (8kB) in our im-

plementation. Our region library would benefit from better support for small regions

(e.g., making the minimum region size 4kB as in our previous system C@).

• On applications with a larger memory footprint (a few megabytes), unsafe regions use

less memory than malloc/free (from 19% less to 4% less).

• The conservative garbage collector uses more memory than unsafe regions or mal-

loc/free, up to 8x more.

• RC’s safe regions pay a generally small memory-usage price for safety: this overhead is

17% or less on all benchmarks except apache. On apache RC’s minimum region size is

16kB which leads to a 48% increase in memory usage (to 437kB). On the benchmarks

with a larger memory usage, RC’s regions tend to use less memory than malloc/free

(from 6% less to 2% more).

• Unsafe regions are always faster than malloc/free (up to 49%), and from 2% slower

to 51% faster than conservative garbage collection.

132

• The performance of RC’s safe regions is also good: RC is from 6% slower to 48%

faster than malloc/free, and from 2% slower to 55% faster 1 than conservative garbage

collection.

These results show that regions are a viable alternative to the two traditional

memory management styles, explicit deallocation and garbage collection. Regions do have

specific strengths and weaknesses, we discuss these further below (Chapter 7.1).

The cost of reference counting, i.e., the overhead of RC over unsafe regions, is

reasonable: at most 12.6% of execution time is dedicated to maintaining reference counts.

This overhead is achieved with the help of type qualifiers that allow the programmer to

easily declare some aspects of the program’s region structure. We generalise these qualifiers

into a type system for reference-counted region systems. Analysis of RC programs rewritten

with these types allows us to eliminate a substantial fraction of the runtime checks implied

by the type qualifiers (from 37% to 99.99%).

We end this dissertation with a couple of thoughts about improvements to RC,

and to memory management in general (Chapter 7.2).

7.1 Strengths and Weaknesses of Regions

There are situations where regions are not a good memory management model,

particularly when the programmer does not know enough about the lifetime of objects at

allocation-time to place them in appropriate regions. One example we encountered is a

game2 where objects are allocated and deallocated as the result of the player’s actions;

there is no way to place objects with similar lifetimes in a common region. We leave

generalizations of explicit regions to better handle such applications as future work.

Stoutamire [49] and our moss benchmark show that regions can be used to im-

prove data locality by providing a mechanism for programmers to specify which values

should be colocated in memory, as well as which values should be kept separated. Neither

traditional garbage collection nor malloc/free provide any such mechanism. This advantage

is not specific to reference-counted regions. For instance, Stoutamire’s study was based on

garbage-collected regions.

1On this benchmark, RC is faster than unsafe regions because of reduced L2 cache misses.
2MUME, see http://mume.org or telnet://mume.org for details.

133

Reference-counted regions provide safety with predictable performance, making

them suitable for use in a safe, real-time language. The cost of all operations is constant

(pointer writes) or bounded in an easily predictable way (object and region allocation,

region deallocation), as discussed in Chapter 4.5. Of course, malloc/free implementations

can also be real-time, but without safety. And as mentioned in the introduction, real-time

garbage collectors have a significant performance penalty.

In summary, we see that malloc/free and garbage collection have nearly opposite

tradeoffs: malloc/free is unsafe and hard to use, but provides good control over memory and

a low space overhead. Garbage collection is safe and easy to use, but provides no control

over object deallocation and has a high space overhead. Regions are a third alternative

which avoids most of these disadvantages: regions are safe and reasonably easy to use, have

reasonable space overhead and provide better control over memory than either malloc/free

or garbage collection (as regions allow some control over locality).

From these considerations, we believe regions are best suited for high-performance

applications that use a large fraction of machine memory and where the lifetimes of val-

ues can be statically predicted. Regions are also useful for writing software with more

predictable performance than garbage-collection-based systems.

7.2 Extensions

To be useful for all applications, we believe that our region library and reference-

counting must be extended to handle regions containing very few small-to-medium-size

objects. For instance, we could provide a call to allocate a single-object-region. This

would help applications like the game we mentioned above where the lifetimes of individual

objects are not predictable. It is not immediately clear how support for such regions can

be efficiently added to RC.

Most of today’s languages are wedded to a single memory management paradigm,

e.g., garbage collection. Most compilers for these languages are also restricted to a single

implementation of that paradigm. Thus programmers are forced by their language choice

into a haphazard selection of a memory management technique (garbage collection, region-

based, etc) and algorithm (e.g., stop-and-copy garbage collection). Furthermore, once made

this selection is hard to change as memory management assumptions are built deeply into

languages, compilers and applications. We believe that applications would benefit from

134

more flexibility in the choice of memory management in languages and their implementation.

This would allow programmers to use the style of memory management most suited to a

particular application, or to mix different styles of memory management in different parts of

a large program. Additionally, the programmer could choose an implementation of memory

management suited to a particular application (e.g., a region library with good support for

small objects at the cost of slightly slower execution time). RC is a step in this direction,

as it allows mixing of two memory management styles: explicit deallocation and regions.

135

Bibliography

[1] A. Aiken, M. Fahndrich, and R. Levien. Better Static Memory Management: Improving

Region-based Analysis of Higher-order Languages. In Proceedings of the ACM SIG-

PLAN ’95 Conference on Programming Language Design and Implementation, pages

174–185, La Jolla, CA, June 1995.

[2] A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[3] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient Detection of all Pointer and Array

Access Errors. In Proceedings of the ACM SIGPLAN ’94 Conference on Programming

Languages Design and Implementation, pages 290–301, Orlando, FL, June 1994. Also

Lisp Pointers VIII 3, July–September 1994.

[4] D. Bacon, C. Attanasio, H. Lee, V. Rajan, and S. Smith. Java without the Cof-

fee Breaks: a Nonintrusive Multiprocessor Garbage Collector. In Proceedings of the

ACM SIGPLAN ’01 Conference on Programming Language Design and Implementa-

tion, pages 92–103, Snowbird, UT, June 2001.

[5] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: A Dialect of Java without Data

Races. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Systems,

Languages and Applications (OOPSLA ’00), pages 382–400, Minneapolis, MN, Oct.

2000.

[6] H. G. Baker. List Processing in Real-Time on a Serial Computer. Communications of

the ACM, 21(4):280–94, 1978.

[7] D. A. Barrett and B. G. Zorn. Using Lifetime Predictors to Improve Memory Allocation

Performance. In Proceedings of the ACM SIGPLAN ’93 Conference on Programming

136

Language Design and Implementation, pages 187–196, Albuquerque, New Mexico, June

1993.

[8] J. F. Bartlett. Compacting Garbage Collection with Ambiguous Roots. Technical

Report 88/2, DEC Western Research Laboratory, Palo Alto, CA, Feb. 1988. Also in

Lisp Pointers 1, 6 (April–June 1988), pp. 2–12.

[9] J. F. Bartlett. Mostly-Copying Garbage Collection picks up Generations and C++.

Technical Note, DEC Western Research Laboratory, Palo Alto, CA, Oct. 1989.

[10] L. Birkedal, M. Tofte, and M. Vejlstrup. From Region Inference to von Neumann

Machines via Region Representation Inference. In Conference Record of POPL ’96:

23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

St. Petersburg Beach, FL, Jan. 1996.

[11] D. G. Bobrow. Managing Re-entrant Structures using Reference Counts. ACM Trans-

actions on Programming Languages and Systems, 2(3):269–273, July 1980.

[12] H.-J. Boehm. Simple GC-Safe Compilation. In P. R. Wilson and B. Hayes, editors,

OOPSLA/ECOOP ’91 Workshop on Garbage Collection in Object-Oriented Systems,

Oct. 1991.

[13] H.-J. Boehm and M. Weiser. Garbage Collection in an Uncooperative Environment.

Software Practice and Experience, 18(9):807–820, 1988.

[14] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and M. Turnbull.

The Real-Time Specification for JavaTM. Addison-Wesley, Reading, Mass., 2000.

[15] M. V. Christiansen, F. Henglein, H. Niss, and P. Velschow. Safe Region-based Memory

Management for Objects. Technical Report D-397, DIKU, Department of Computer

Science, University of Copenhagen, Oct. 1998.

[16] G. E. Collins. A Method for Overlapping and Erasure of Lists. Communications of the

ACM, 3(12):655–657, Dec. 1960.

[17] Compaq Computer Corporation. Alpha 21264 Microprocessor Hardware Reference

Manual, July 1999.

137

[18] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms, chap-

ter 27. MIT Press, Cambridge, Mass., 1990.

[19] K. Crary, D. Walker, and G. Morrisett. Typed Memory Management in a Calculus of

Capabilities. In Conference Record of POPL ’99: The 26th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 262–275, San Antonio,

Texas, Jan. 1999.

[20] R. Deline and M. Fähndrich. Enforcing High-Level Protocols in Low-Level Software. In

Proceedings of the ACM SIGPLAN ’01 Conference on Programming Language Design

and Implementation, pages 59–69, Snowbird, UT, June 2001.

[21] D. Detlefs, A. Dosser, and B. Zorn. Memory allocation costs in large C and C++

programs. Software Practice and Experience, 24(6), 1994.

[22] L. P. Deutsch and D. G. Bobrow. An Efficient Incremental Automatic Garbage Col-

lector. Communications of the ACM, 19(9):522–526, Sept. 1976.

[23] J. R. Ellis and D. L. Detlefs. Safe, efficient garbage collection for C++. In USENIX

Association, editor, Proceedings of the 1994 USENIX C++ Conference: April 11–14,

1994, Cambridge, MA, pages 143–177, Berkeley, CA, USA, Apr. 1994. USENIX.

[24] C. W. Fraser and D. R. Hanson. A Retargetable C Compiler: Design and Implemen-

tation. Benjamin/Cummings Pub. Co., Redwood City, CA, USA, 1995.

[25] G. Morrisett et al. Cyclone: A Next-Generation Systems Language. Information at

http://www.cs.cornell.edu/Projects/cyclone/.

[26] D. Gay and A. Aiken. Memory Management with Explicit Regions. In Proceedings of

the ACM SIGPLAN ’98 Conference on Programming Language Design and Implemen-

tation, pages 313–323, Montréal, Canada, June 1998.

[27] D. Gay and A. Aiken. Language Support for Regions. In Proceedings of the ACM SIG-

PLAN ’01 Conference on Programming Language Design and Implementation, pages

70–80, Snowbird, UT, June 2001.

[28] A. Goldberg and R. Tarjan. A New Approach to the Maximum-Flow Problem. Journal

of the ACM, 35(4):921–940, Oct. 1988.

138

[29] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. The Java Series.

Addison-Wesley, Reading, MA, USA, June 1996.

[30] D. Grunwald and B. Zorn. CustoMalloc: Efficient, Synthesised Memory Allocators.

Software Practice and Experience, 23:851–869, 1993.

[31] D. Grunwald, B. Zorn, and R. Henderson. Improving the Cache Locality of Memory

Allocation. In Proceedings of the ACM SIGPLAN ’93 Conference on Programming

Languages Design and Implementation, pages 177–186, Albuquerque, NM, June 1993.

[32] D. R. Hanson. Fast Allocation and Deallocation of Memory Based on Object Lifetimes.

Software Practice and Experience, 20(1):5–12, Jan. 1990.

[33] R. Hastings and B. Joyce. Fast Detection of Memory Leaks and Access Errors. In Pro-

ceedings of the Winter ’92 USENIX conference, pages 125–136. USENIX Association,

1992.

[34] Y. Ichisugi and A. Yonezawa. Distributed Garbage Collection Using Group Refer-

ence Counting. In OOPSLA/ECOOP ’90 Workshop on Garbage Collection in Object-

Oriented Systems, Oct. 1990.

[35] M. S. Johnstone. Non-Compacting Memory Allocation and Real-Time Garbage Collec-

tion. PhD thesis, Univesity of Texas at Austin, Austin, TX, Dec. 1997.

[36] R. W. M. Jones and P. H. J. Kelly. Backwards-Compatible Bounds Checking for Arrays

and Pointers in C Programs. In Automated and Algorithmic Debugging, pages 13–26,

1997.

[37] S. Kaufer, R. Lopez, and S. Pratap. Saber-C: an Interpreter-based Programming

Environment for the C Language. In Proceedings of Usenix Summer Conference, pages

161–171, July 1988.

[38] B. Liblit. Type Systems for Distributed Data Sharing. Technical Report (in prepara-

tion), EECS Department, University of California, Berkeley, 2001.

[39] A. Loginov, S. H. Yong, S. Horwitz, and T. Reps. Debugging via Run-Time Type

Checking. In Proceedings of FASE 2001: Fundamental Approcges to Softare Engineer-

ing, 2001.

139

[40] J. H. McBeth. On the Reference Counter Method. Communications of the ACM,

6(9):575, Sept. 1963.

[41] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-Safe Retrofitting of Legacy

Code. To appear in the Conference Record of POPL ’02: The 29th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages.

[42] H. Patil and C. N. Fischer. Efficient Run-time Monitoring Using Shadow Processing.

In Automated and Algorithmic Debugging, pages 119–132, 1995.

[43] N. Röjemo and C. Runciman. Lag, Drag, Void, and Use: Heap Profiling and Space-

efficient Compilation Revisited. In Proceedings of the ACM SIGPLAN ’96 Conference

on Programming Languages Design and Implementation, pages 34–41, June 1996.

[44] D. T. Ross. The AED Free Storage Package. Communications of the ACM, 10(8):481–

492, Aug. 1967.

[45] R. Shaham, E. K. Kolodner, and M. Sagiv. Heap Profiling for Space-Efficient Java. In

Proceedings of the ACM SIGPLAN ’01 Conference on Programming Language Design

and Implementation, pages 104–113, Snowbird, UT, June 2001.

[46] F. Smith and G. Morrisett. Comparing Mostly-copying and Mark-Sweep Conserva-

tive Collection. In International Symposium on Memory Management, pages 68–78,

Vancouver, Canada, Oct. 1998.

[47] J. Steffen. Adding Run–time Checking to the Portable C Compiler. Software Practice

and Experience, 22(4):305–316, 1992.

[48] J. M. Stichnoth, G.-Y. Lueh, and M. Cierniak. Support for Garbage Collection at Every

Instruction in a Java Compiler. In Proceedings of the ACM SIGPLAN ’99 Conference

on Programming Language Design and Implementation, pages 118–127, Atlanta, GA,

May 1999.

[49] D. Stoutamire. Portable, Modular Expression of Locality. PhD thesis, University of

California at Berkeley, 1997.

[50] D. Stoutamire and S. Omohundro. The Sather 1.1 Specification. Technical Report

TR-96-012, International Computer Science Institute, Berkeley, CA, August 1996.

140

[51] W. R. Stoye, T. J. W. Clarke, and A. C. Norman. Some Practical Methods for Rapid

Combinator Reduction. In Conference Record of the 1984 ACM Symposium on Lisp

and Functional Programming, pages 159–166, Austin, TX, Aug. 1984.

[52] A. Sǎlcianu and M. Rinard. Pointer and Escape Analysis for Multithreaded Programs.

In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP ’97), pages 12–23, Mar. 2001.

[53] D. Tarditi. Design and Implementation of Code Optimizations for a Type-Directed

Compiler for Standard ML. PhD thesis, Carnegie Mellon University, Pittsburgh, PA,

Dec. 1996. Available as Technical Report CMU-CS-97-108.

[54] D. Tarditi. Compact Garbage Collection Tables. In International Symposium on Mem-

ory Management, pages 50–58, Minneapolis, MN, Oct. 2000.

[55] M. Tofte and J.-P. Talpin. Region-Based Memory Management. Information and

Computation, 132(2):109–176, Feb. 1997.

[56] K.-P. Vo. Vmalloc: A General and Efficient Memory Allocator. Software Practice and

Experience, 26(3):357–374, Mar. 1996.

[57] D. Walker and G. Morrisett. Alias Types for Recursive Data Structures. Technical

Report TR2000-1787, Cornell University, Mar. 2000.

[58] D. Weaver and T. Germond. The SPARC Architecture Manual: Version 9. Prentice-

Hall, New Jersey, USA, 1994.

[59] J. William S. Beebee. Region-Based Memory Management for Real-Time Java. Mas-

ter’s thesis, Dept. of Electrical Engineering and Computer Science, Massachusettes

Institute of Technology, Sept. 2001.

[60] P. R. Wilson. Uniprocessor Garbage Collection Techniques. In Proceedings of Interna-

tional Workshop on Memory Management, volume 637 of Lecture Notes in Computer

Science, St Malo, France, Sept. 1992. Springer-Verlag.

[61] P. R. Wilson. Uniprocessor Garbage Collection Techniques. Technical report, Univer-

sity of Texas, Jan. 1994. Expanded version of the IWMM92 paper.

141

[62] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic Storage Allocation:

A Survey and Critical Review. In Proceedings of International Workshop on Memory

Management, volume 986 of Lecture Notes in Computer Science, Kinross, Scotland,

Sept. 1995. Springer-Verlag.

[63] D. S. Wise and D. P. Friedman. The One-Bit Reference Count. BIT, 17(3):351–9,

1977.

[64] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hil-

finger, S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A High-Performance

Java Dialect. In Proceedings of ACM 1998 Workshop on Java for High-Performance

Network Computing, pages 1–14, Palo Alto, CA, Feb. 1998.

[65] G. M. Yip. Incremental, Generational Mostly-Copying Garbage Collection in Uncoop-

erative Environments. Technical Report 91/8, Digital, Western Research Laboratory,

June 1991. Masters Thesis — MIT, Cambridge, MA, 1991.

142

Appendix A

Standard C Library Compatibility

This section details the rules that must be followed when calling functions in

the standard C library. Any function that is not mentioned can be called without any

restrictions.

• scanf, fscanf, sscanf, scanf: do not use the %p format specifier (it writes a

pointer).

• fread: do not read into a type containing pointers.

• memcpy, memmove, memset: the destination argument must not be of a type contain-

ing pointers. You can use rarraycopy to replace many uses of memcpy.

• strtod, strtol, strtoul: the second argument (the address of a variable into

which to store a pointer to the unconverted suffix) should be NULL, or the follow-

ing workaround should be used:

char *s, *t;

strtol(s, &t, base);

should be rewritten as:

char *s, *t;

t = s;

strtol(s, &t, base);

• malloc: as was mentioned above, do not use malloc to allocate memory for a type

containing unqualified pointers. Use calloc instead, or call memset to clear the

memory before it is used.

143

• realloc: if using realloc to increase the size of an object containing unqualified

pointers, call memset to clear the extra memory allocated to the object. For instance,

int **x = calloc(10, sizeof(int *));

...

x = realloc(x, 20 * sizeof(int *));

memset(x + 10, 0, 10 * sizeof(int)); /* clear extra 10 ’int *’s */

• qsort: although this may write pointers (depending on the type being sorted) it can

be used with no restrictions as it only permutes the pointers within the object being

sorted.

• setjmp, longjmp: these functions cannot be used.

