
july 2008 | vol. 51 | no. 7 | communications of the acm 99

doi: 10.1145/1364782.1364804

Abstract
The wireless sensor network community approached net-
working abstractions as an open question, allowing answers
to emerge with time and experience. The Trickle algorithm
has become a basic mechanism used in numerous proto-
cols and systems. Trickle brings nodes to eventual consis-
tency quickly and efficiently while remaining remarkably
robust to variations in network density, topology, and dy-
namics. Instead of flooding a network with packets, Trickle
uses a “polite gossip” policy to control send rates so each
node hears just enough packets to stay consistent. This
simple mechanism enables Trickle to scale to 1000-fold
changes in network density, reach consistency in seconds,
and require only a few bytes of state yet impose a mainte-
nance cost of a few sends an hour. Originally designed for
disseminating new code, experience has shown Trickle to
have much broader applicability, including route mainte-
nance and neighbor discovery. This paper provides an over-
view of the research challenges wireless sensor networks
face, describes the Trickle algorithm, and outlines several
ways it is used today.

1. WIRELESS SENSOR NETWORKS
Although embedded sensing applications are extremely
diverse, ranging from habitat and structural monitoring to
vehicle tracking and shooter localization, the software and
hardware architectures used by these systems are surpris-
ingly similar. The typical architecture is embodied by the
mote platforms, such as those shown in Figure 1. A micro-
controller provides processing, program ROM, and data
RAM, as well as analog-to-digital converters for sensor in-
puts, digital interfaces for connecting to other devices, and
control outputs. Additional flash storage holds program
images and data logs. A low-power CMOS radio provides
a simple link layer. Support circuitry allows the system to
enter a low-power sleep state, wake quickly, and respond to
important events.

Four fundamental constraints shape wireless embedded
system and network design: power supply, limited memory,
the need for unattended operation, and the lossy and tran-
sient behavior of wireless communication. A typical power
envelope for operating on batteries or harvesting requires a
600 µW average power draw, with 1%% of the time spent in
a 60 mW active state and the remainder spent in a very low
power 6 µW passive state.

Maintaining a small memory footprint is a major require-
ment of algorithm design. Memory in low-cost, ultra-low-
power devices does not track Moore’s Law. One indication
of this is that microcontroller RAM costs three orders of
magnitude more than PC SRAM and five orders more than
PC DRAM. More importantly, SRAM leakage current, which
grows with capacity, dictates overall standby power con-
sumption and, hence, lifetime. Designs that provide large
RAMs in conjunction with 32-bit processors go to great
lengths to manage power. One concrete example of such
nodes is the Sun SPOT,20 which enters a low-power sleep
state by writing RAM contents to flash. Restoring memory
from flash on wakeup uses substantial power and takes con-
siderable time. The alternative, taken in most sensor node
designs, is to have just a few kilobytes of RAM. This, in turn,
imposes limits on the storage complexity of network (and
other) protocols, requiring routing tables, buffering, and
caches be kept small. The historical trends of monetary and
energy costs suggest these constraints are likely to last.

Wireless sensors are typically embedded in the physi-
cal environment associated with their application. Com-

The Emergence of a
Networking Primitive in
Wireless Sensor Networks
By Philip Levis, Eric Brewer, David Culler, David Gay, Sam Madden, Neil Patel,
Joe Polastre, Scott Shenker, Robert Szewczyk, and Alec Woo

Figure 1: EPIC, KMote, and Telos motes. Each has an 8MHz
microcontroller, 10kB of RAM, 48kB of program flash, and a
250kbps radio.

100 communications of the acm | July 2008 | vol. 51 | no. 7

research highlights

munication connectivity varies due to environmental and
electromagnetic factors, with the additional constraint
that no human being will shepherd the device to a bet-
ter setting, as with a cell phone or a laptop. The degree
of the network at a node, i.e., the number of nodes in its
communication neighborhood, is determined not by the
desired network organization but by the physical device
placement, which is often dictated by application require-
ments and physical constraints. There may be thousands
of nodes in close proximity, or just a few. A single trans-
mission may be received by many devices, so any retrans-
mission, response, or even a simple acknowledgment,
may cause huge contention, interference, and loss. Re-
dundancy is essential for reliability, but it also can be a
primary cause of loss.

This last point is one of the key observations that have
emerged from a decade of development of networking ab-
stractions for wireless sensor networks: the variety of net-
work topologies and densities across which sensor network
protocols must operate calls for a polite, density-aware, local
retransmission scheme. This paper describes the Trickle al-
gorithm, which uses such a communication pattern to pro-
vide an eventual consistency mechanism to protocols and
services. In the past ten years, a key insight that has emerged
from the wireless sensor network community is that many
protocol problems can be reduced to maintaining even-
tual consistency. Correspondingly, Trickle has emerged as
the core networking primitive at the heart of practical, effi-
cient, and robust implementations of many sensor network
protocols and systems. Before diving into the details of the
Trickle, however, we review how core sensor networking pro-
tocols work and differ from conventional networking proto-
cols, with the goal of exploring how a Trickle-like primitive
satisfies some of their needs.

2. NETWORKING PROTOCOLS
Networking issues are at the core of embedded sensor net-
work design because radio communication—listening,
receiving, and transmitting—dominates the active energy
budget and defines system lifetime. The standard energy
cost metric for multihop protocols, in either link layer
meshing or network layer routing, is communication cost,
defined as the number of individual radio transmissions
and receptions. One protocol is more efficient than another
if it can provide equivalent performance (e.g., throughput,
latency, delivery ratio) at a lower communication cost. Pro-
tocols focus on minimizing transmissions and making sure
transmitted packets arrive successfully.

Almost all sensor network systems rely on two multihop
protocols for their basic operation: a collection protocol
for pulling data out of a network and a dissemination
protocol for pushing data into a network through one or
more distinguished nodes or egress routers. Many higher
level protocols build on dissemination and collection. For
example, reprogramming services such as Deluge9 use
dissemination to deliver commands to change program
images. Management layers22 and remote source-level de-
buggers25 also use dissemination. Reliable transport pro-
tocols, such as RCRT,18 and rate control protocols such as

IFRC,19 operate on collection trees. Point-to-point routing
schemes, such as S4,16 establish overlays over multiple
parallel collection topologies.

While collection and dissemination have the opposite
communication patterns (all-to-one vs. one-to-all) and differ
in reliability (unreliable vs. reliable), both maintain eventu-
ally consistent shared state between nodes. The rest of this
section provides a high-level overview of these two protocol
classes. It provides details on the challenging problems they
introduce, and how some of them can be solved through
eventual consistency.

2.1. Pushing data in: dissemination
One problem sensor network administrators face is dynami-
cally changing how a network collects data by changing the
sampled sensors, the sampling rate, or even the code run-
ning on the nodes by disseminating the change to every
node in a network. We begin with a discussion of dissemi-
nation protocols because they were the original impetus for
Trickle and are its simplest application.

Early systems used packet floods to disseminate changes.
Flooding protocols rebroadcast packets they receive. Flood-
ing is very simple—often just a line or two of code—but has
many problems. First, floods are unreliable. Inevitably, some
nodes do not receive the packet, so users typically repeatedly
flood until every node receives it. Second, in high density
networks, many nodes end up rebroadcasting packets at the
same time. These messages collide and cause a form of net-
work collapse called a “broadcast storm.”17

Second-generation dissemination and network program-
ming systems like Xnp3 and TinyDB15 use an adaptive flood
combined with a protocol to request missing messages.
Adaptive flooding uses an estimate of the node density to
limit the flooding rate. The missing message protocol al-
lows nodes to request the (hopefully few) missing messages
from their neighbors. Unfortunately, getting such protocols
to work well can be tricky, especially across a range of net-
work densities and object sizes.

Another way to look at dissemination protocols is that
they ensure that every node has an eventually consistent
version of some shared state, such as the value of a configu-
ration parameter or command. Data consistency is when
all nodes have the same version of that state, and nodes re-
solve inconsistencies by updating neighbors to the newer
version. Inductively, these definitions cause the network to
converge on the most recent version. To disseminate a com-
mand, a system installs it on one node as a newer version
and initiates the consistency protocol.

Casting dissemination as a data consistency problem
means it does not provide full reliability. Eventual con-
sistency only promises to deliver the most recent ver-
sion to connected nodes. Disconnected nodes can and
often do miss updates. In practice, however, this limita-
tion is rarely problematic. An administrator who chang-
es the data reporting rate three times then adds some
new nodes and expects them to receive the most recent
reporting rate, not all three. Similarly, when sending
commands, users do not expect a new node to receive
the entire history of all commands injected into a net-

july 2008 | vol. 51 | no. 7 | communications of the acm 101

work. A node that is disconnected for several minutes
will still receive the most recent command when it re-
connects, however.

Dissemination protocols succeed where flooding and its
derivatives fail because they cast the problem of delivering
data into maintaining data consistency among neighbors.
This allows them to provide a very useful form of reliabil-
ity in arbitrary topologies with no a priori topology knowl-
edge or configurati on. An effective dissemination proto-
col, however, needs to bring nodes up to date quickly while
sending few packets when every node has the most recent
version: this is correspondingly a requirement for the un-
derlying consistency mechanism.

2.2. Pulling data out: collection
As the typical sensor network goal is to report observations
on a remote environment, it is not surprising that data col-
lection is the earliest and most studied class of protocol.
There are many collection protocol variations, similar to
how there are many versions of TCP. These differences
aside, all commonly used collection protocols provide
unreliable datagram delivery to a collection point using
a minimum-cost routing tree. Following the general goal
of layer 3 protocols, cost is typically measured in terms of
expected transmissions, or ETX:2 nodes send packets on
the route that requires the fewest transmissions to reach
a collection point.

The earliest collection protocol, directed diffusion, pro-
posed dynamically setting up collection trees based on data-
specific node requests.10 Early experiences with low-power
wireless, however, led many deployments to move towards a
much simpler and less general approach, where each node
decides on a single next hop for all forwarded data traffic,
thereby creating routing trees to fixed collection points. The
network builds this tree by establishing a routing cost gra-
dient. A collection point has a cost of 0. A node calculates
the cost of each of its candidate next hops as the cost of that
node plus the cost of the link to it. Inductively, a node’s cost
is the sum of the costs of the links in its route. Figure 2 illus-
trates an example topology.

Collection variations boil down to how they quantify and
calculate link costs, the number of links they maintain, how
they propagate changes in link state amongst nodes, and
how frequently they re-evaluate link costs and switch par-
ents. Early protocols used hop-counts8 as a link cost met-
ric, similar to MANET protocols such as AODV and DSDV;
second-generation protocols such as MintRoute24 and Srcr2
estimated the transmissions per delivery on a link using pe-
riodic broadcasts; third-generation protocols, such as Mul-
tiHopLQI, added physical layer signal quality to the metric;
current generation collection protocols, such as Collection
Tree Protocol (CTP), unify these approaches, drawing on in-
formation from multiple layers.6

Most collection layers operate as anycast protocols. A net-
work can have multiple data collection points, and collec-
tion automatically routes to the closest one. As there is only
one destination—any collection point—the required rout-
ing state can be independent of network density and size.
Most protocols use a small, fixed-size table of candidate next

hops. They also attempt to strike a balance between route
stability and churn to discover new, possibly better parents
by switching parents infrequently and using damping mech-
anisms to limit the rate of change.

As collection protocols have improved and become bet-
ter at choosing routes, reducing control traffic has become
an increasingly important component of efficiency. While
nodes can piggyback some control information on data
packets, they need to send link-layer broadcasts to their lo-
cal neighbors to advertise their presence and routing cost.
Choosing how often to send these advertisements introduc-
es a difficult design tension. A slow rate imposes a low over-
head, but limits how quickly the tree can adapt to failures or
link changes, making its data traffic less efficient. A fast rate
imposes a higher overhead, but leads to an agile tree that
can more accurately find the best route to use.

This tension is especially challenging when a network
only collects data in response to events, and so can go
through periods of high and low data rates. Having a high
control rate during periods of low traffic is highly inef-
ficient, while having a low control rate during periods of
high traffic makes the tree unable to react quickly enough
to changes. When starting a burst of transmissions, a node
may find that link costs have changed substantially neces-
sitating a change in its route and, as a result, advertised
routing cost. Changes in costs need to propagate quickly, or
the topology can easily form routing loops. For example, if a
link’s cost increases significantly, then a node may choose
one of its children as its next hop. Since the protocol state
must be independent of the topology, a node cannot avoid
this by simply enumerating its children (constraining tree
in-degree to a constant leads to inefficient, circuitous to-
pologies in dense networks).

Current protocols, such as CTP21 and ArchRock’s routing
layer,1 resolve this tension by reducing the routing gradient
as a data consistency problem. The gradient is consistent as
long as children have a higher cost than their parent. An in-
consistency can arise when costs change enough to violate

Figure 2: Sample collection tree, showing per-link and node costs.
The cost of a node is its next hop’s cost plus the cost of the link.

0

12

22

22

2423

35
36

15

10

18

20

23

12

10

12

12

14

10

15

18

10
10

102 communications of the acm | July 2008 | vol. 51 | no. 7

research highlights

this constraint. As long as routing costs are stable, nodes
can assume the gradient is consistent and avoid exchanging
unnecessary packets.

2.3. A general mechanism
The examples above described how two very different proto-
cols can both address a design tension by reducing a prob-
lem to maintaining data consistency. Both examples place
the same requirements on a data consistency mechanism:
it needs to resolve inconsistencies quickly, send few pack-
ets when data is consistent, and require very little state. The
Trickle algorithm, discussed in the next section, meets these
three requirements.

3. Trickle
The Trickle algorithm establishes a density-aware local
broadcast with an underlying consistency model that guides
when a node communicates. When a node’s data does not
agree with its neighbors, it communicates quickly to re-
solve the inconsistency. When nodes agree, they slow their
communication rate exponentially, such that in a stable
state nodes send at most a few packets per hour. Instead of
flooding a network with packets, the algorithm controls the
send rate so each node hears a small trickle of packets, just
enough to stay consistent. Furthermore, by relying only on
local broadcasts, Trickle handles network repopulation, is
robust to network transience, loss, and disconnection, and
requires very little state (implementations use 4–11 bytes).

While Trickle was originally designed for reprogramming
protocols (where the data is the code of the program being
updated), experience has shown it to be a powerful mecha-
nism that can be applied to wide range of protocol design
problems. For example, routing protocols can use Trickle to
ensure that nodes in a given neighborhood have consistent,
loop-free routes. When the topology is consistent, nodes
occasionally gossip to check that they still agree, and when
the topology changes they gossip more frequently, until they
reach consistency again.

For the purpose of clearly explaining the reasons be-
hind Trickle’s design, all of the experimental results in
this section are from simulation, in some cases very high-
level abstract simulators. In practice, Trickle’s simplicity
means it works remarkably well in the far more challeng-
ing and difficult real world. The original Trickle paper,13 as
well as Deluge9 and DIP14 report experimental results from
real networks.

3.1. Algorithm
Trickle’s basic mechanism is a randomized, suppressive
broadcast. A Trickle has a time interval of length t and a
redundancy constant k. At the beginning of an interval, a
node sets a timer t in the range of t-2, t. When this timer fires,
the node decides whether to broadcast a packet contain-
ing metadata for detecting inconsistencies. This decision
is based on what packets the node heard in the interval be-
fore t. A Trickle maintains a counter c, which it initializes to
0 at the beginning of each interval. Every time a node hears
a Trickle broadcast that is consistent with its own state, it
increments c. When it reaches time t, the Trickle broadcasts

if c < k. Randomizing t spreads transmission load over a sin-
gle-hop neighborhood, as nodes take turns being the first
node to decide whether to transmit. Figure 3 summarizes
Trickle’s parameters.

3.2. Scalability
Transmitting only if c < k makes a Trickle density aware, as
it limits the transmission rate over a region of the network
to a factor of k. In practice, the transmission load a node ob-
serves over an interval is O(k . log(d) ), where d is the network
density. The base of the logarithm depends on the packet
loss rate PLR: it is P

1—L–R.
This logarithmic behavior represents the probability that

a single node misses a number of transmissions. For exam-
ple, with a 10% loss rate, there is a 10% chance that a node will
miss a single packet. If a node misses a packet, it will trans-
mit, resulting in two transmissions. There is correspondingly
a 1% chance a node will miss two packets from other nodes,
leading to three transmissions. In the extreme case of a 100%
loss rate, each node is by itself: transmissions scale linearly.

Figure 4 shows this scaling. The number of transmissions
scales logarithmically with density and the slope line (base
of the logarithm) depends on the loss rate. These results
come from a Trickle-specific algorithmic simulator we im-
plemented to explore the algorithm’s behavior under con-
trolled conditions. Consisting of little more than an event
queue, this simulator allows configuration of all of Trickle’s
parameters, run duration, and the boot time of nodes. It
models a uniform packet loss rate (same for all links) across
a single hop network. Its output is a packet send count.

Figure 3: Trickle parameters and variables.

t	 Communication interval length

T	 Timer value in range t-2
, t

C	 Communication counter

K	 Redundancy constant

t
l	 Smallest t

th	 Largest t

Figure 4: Trickle’s transmissions per interval scales logarithmically
with density. The base of the logarithm is a function of the packet
loss rate (the percentages)

1 2 4 8 16 32 64 128 256

Nodes

0

2

4

6

8

10

12

T
ra

n
sm

is
si

on
s/

in
te

rv
al

0%

20%

40%

60%

july 2008 | vol. 51 | no. 7 | communications of the acm 103

3.3. Synchronization
The scaling shown in Figure 4 assumes that all nodes are
synchronized, such that the intervals during which they are
awake and listening to their radios line up perfectly. Inevita-
bly, this kind of time synchronization imposes a communi-
cation, and therefore energy, overhead. While some networks
can provide time synchronization to Trickle, others cannot.
Therefore, Trickle is designed to work in both the presence and
absence of synchronization.

Trickle chooses t in the range of (t-2, t] rather than (0, t] be-
cause the latter causes the transmission load in unsynchro-
nized networks to scale with O(d). This undesirable scaling
occurs due to the short listen problem, where some subset of
motes gossip soon after the beginning of their interval. They
listen for only a short time, before anyone else has a chance to
speak up. This is not a problem if all of the intervals are syn-
chronized, since the first gossip will quiet everyone else. How-
ever, if nodes are not synchronized, a node may start its interval
just after another node’s broadcast, resulting in missed mes-
sages and increased transmission load.

Unlike loss, where the extra O(log(d) ) transmissions keep
the worst case node that missed several packets up to date, the
additional transmissions due to the short listen problem are
completely wasteful. Choosing t in the range of (t-2, t] removes
this problem: it defines a “listen-only” period of the first half of
an interval. A listening period improves scalability by enforcing
a simple constraint. If sending a message guarantees a silent
period of some time T that is independent of density, then the
send rate is bounded above (independent of the density). When
a mote transmits, it suppresses all other nodes for at least the
length of the listening period. Figure 5 shows how a listen peri-
od of t-2. bounds the total sends in a lossless single-hop network
to be 2k. With loss, transmissions scale as O(2k . log(d) ) per in-
terval, returning scalability to the O(log(d) ) goal.

3.4. Controlling t
A large t (gossiping interval) leads to a low communication
overhead, but propagates information slowly. Conversely,

a small t imposes a higher communication overhead, but
propagates data more quickly. These two goals, rapid propa-
gation and low overhead, are fundamentally at odds: the for-
mer requires communication to be frequent, while the latter
requires it to be infrequent.

By dynamically scaling t, Trickle can quickly make data
consistent with a very small cost. t has a lower bound, tl, and
an upper bound th. When t expires without a node receiv-
ing a new update, t doubles, up to a maximum of th. When
a node detects a data inconsistency (e.g., a newer version
number in dissemination, a gradient constraint violation in
collection), it resets t to be tl.

Essentially, when there is nothing new to say, motes gos-
sip infrequently: t is set to th. However, as soon as a mote
hears something new, it gossips more frequently, so those
who have not heard the new data receive it quickly. The chat-
ter then dies down, as t grows from tl to th.

By adjusting t in this way, Trickle can get the best of both
worlds: rapid consistency and low overhead when the net-
work is consistent. The cost per inconsistency (shrinking t)
is approximately log(-t2

h

l
-) additional sends. For a tl of 1 s and

a th of 1 h, this is a cost of 11 packets to obtain a 3000-fold
decrease in the time it takes to detect an inconsistency (or,
from the other perspective, a 3000-fold decrease in mainte-
nance overhead). The simple Trickle policy, “every once in a
while, transmit unless you have heard a few other transmis-
sions,” can be used both to inexpensively maintain that the
network is consistent as well as quickly inform nodes when
there is an inconsistency.

Figure 6 shows pseudocode for the complete Trickle algorithm.

3.5. Case study: Maté
Maté is a lightweight bytecode interpreter for wireless sen-
sornets.11 Programs are tiny sequences of optimized byte-
codes. The Maté runtime uses Trickle to install new pro-
grams in a network, by making all nodes consistent to the
most recent version of a script.

Maté uses Trickle to periodically broadcast version sum-
maries. In all experiments, code routines fit in a single pack-
et (30 bytes). The runtime registers routines with a Trickle
propagation service, which then maintains all of the neces-
sary timers and broadcasts, notifying the runtime when it
installs new code. Maté uses a very simple consistency reso-
lution mechanism. It broadcasts the missing routines three
times: 1, 3, and 7 s after hearing there is an inconsistency.

Figure 7 shows simulation results of Maté’s behavior during
a reprogramming event. These results come from the TOSSIM
simulator,12 which simulates entire sensornet applications and

Figure 5: Without a listen-only period, Trickle’s transmissions scale
with a square root of the density when intervals are not synchro-
nized. With a listen-only period of duration t-2, the transmissions
per interval asymptotically approach 2k. The black line shows how
Trickle scales when intervals are synchronized. These results are
from lossless networks.

1 2 4 8 16 32 64 128 256

Nodes

0

2

4

6

8

10

12

14

T
ra

n
sm

is
si

on
s/

in
te

rv
al

No listening

Listening

Figure 6: Trickle pseudocode.

Event	A ction

t Expires	D ouble t, up to th. Reset c, pick a new t*

t Expires	I f c < k, transmit

Receive consistent data	I ncrement c

Receive inconsistent data	S et t to t
l. Reset c, pick a new t

*t is picked from the range [t-
2
, t]

104 communications of the acm | July 2008 | vol. 51 | no. 7

research highlights

models wireless connectivity at the bit level. In these experi-
ments, tl is 1 s and th is 1 min.

Each simulation had 400 nodes regularly placed in a
square grid with node spacings of 5, 10, 15, and 20 ft. By
varying network density, we were able to examine how
Trickle’s propagation rate scales over different loss rates
and physical densities. Density ranged from a 5 ft spac-
ing between nodes up to 20 ft (the networks were 95 × 95
to 380 × 380). Crossing the network in these topologies
takes from six to forty hops.a Time to complete propagation
varied from 16 s in the densest network to about 70 s for the
sparsest, representing a latency of 2.7 and 1.8 s per hop, re-
spectively. The minimum per-hop Trickle latency is 2—

ti and
the consistency mechanism broadcasts a routine 1 s after
discovering an inconsistency, so the best case latency is 1.5
s per hop. Despite an almost complete lack of coordination
between nodes, Trickle still is able to cause them to coop-
erate efficiently.

Figure 8 shows how adjusting th changes the propaga-
tion time for the 5 and 20 ft spacings. Increasing th from
1 to 5 min does not significantly affect the propagation
time; indeed, in the sparse case, it propagates faster un-
til roughly the 95th percentile. This result indicates that
there may be little trade-off between the maintenance
overhead of Trickle and its effectiveness in the face of a
propagation event.

A very large th can increase the time to discover incon-
sistencies to be approximately -t2

h -. However, this is only true
when two stable subnets (t = th) with different code recon-
nect. If new code is introduced, it immediately triggers
nodes to reset t to tl, bringing them quickly to a consistent
state.

The Maté implementation of Trickle requires few system
resources. It requires approximately 70 bytes of RAM; half of
this is a message buffer for transmissions, a quarter is point-
ers to code routines. Trickle itself requires only 11 bytes for
its counters; the remaining RAM is for internal coordination
(e.g., pending and initialization flags). The executable code
is 1.8 K (90 lines of code). Other implementations have simi-
lar costs. The algorithm requires few CPU cycles, and can
operate at a very low duty cycle.

3.6. Uses and improvements
Trickle is not just used by Maté; it and its derivatives are
used in almost every dissemination protocol today. The Del-
uge binary dissemination protocol for installing new sensor
node firmware uses Trickle to detect when nodes have dif-
ferent firmware versions9 (tl = 500 ms, th = 1.1 h). The MNP
binary dissemination protocol (tl = 16 s, th = 512 s) adjusts
Trickle so that nodes with more neighbors are more likely
to send updates by preventing low degree nodes from sup-
pressing high degree ones.23 The Drip command layer of the
Sensornet Management System uses Trickle (tl = 100 ms, th
= 32 s) to install commands.22 The Tenet programming ar-

chitecture uses Trickle (tl = 100 ms, th = 32 s) to install small
dynamic code tasks.7

In the past few years, as collection protocols have im-
proved in efficiency, they have also begun to use Trickle. The
CTP, the standard collection layer in the TinyOS operating
system distribution,21 uses Trickle timers (tl = 64 ms, th = 1 h)
for its routing traffic. The 6LoWPAN IPv6 routing layer in
Arch Rock’s software uses Trickle to keep IPv6 routing tables
and ICMP neighbor lists consistent.1 As protocols continue
to improve, Trickle’s efficacy and simplicity will cause it to
be used in more protocols and systems.

One limitation with Trickle as described in this paper
is that its maintenance cost grows O(n) with the number
of data items, as nodes must exchange version numbers.
This growth may be a hindering factor as Trickle’s use in-
creases. Recent work on the DIP protocol addresses this

Figure 7: Time to consistency in 20 × 20 TOSSIM grids (seconds).
The hop count values in each legend are the expected number of
transmissions necessary to get from corner to corner, considering
loss.

(a) 5’ Spacing, 6 hops

16−20
12−16
8−12
4−8
0−4

32−40
24−32
16−24
8−16
0−8

60−75
45−60
30−45
15−30
0−15

20−25
15−20
10−15
5−10
0−5

 (b) 10’ Spacing, 16 hops

(c) 15’ Spacing, 32 hops (d) 20’ Spacing, 40 hops

a These hop count values come from computing the minimum cost
path across the network loss topology, where each link has a weight of

1
1–loss , i.e. the expected number of transmissions to successfully traverse that
link.

Figure 8: Rate nodes reach consistency for different ths in TOSSIM. A
larger th does not slow reaching consistency.

0 10 20 30 40 50 60 70

Time (s)

0%

20%

40%

60%

80%

100%

N
od

es
 c

on
si

st
en

t

5�, 60 s

5�, 300 s

20�, 60 s

20�, 300 s

july 2008 | vol. 51 | no. 7 | communications of the acm 105

concern by using a combination of hash trees and ran-
domized searches, enabling the maintenance cost to re-
main O(1) while imposing a O(log(n) ) discovery cost.14

4. Discussion
Wireless sensor networks, like other ad hoc networks, do not
know the interconnection topology a priori and are typically
not static. Nodes must discover it by attempting to commu-
nicate and then observing where communication succeeds.
In addition, the communication medium is expected to be
lossy. Redundancy in such networks is both friend and foe,
but Trickle reinforces the positive aspects and suppresses
the negative ones.

Trickle draws on two major areas of prior research. The
first area is controlled, density-aware flooding algorithms for
wireless and multicast networks.5, 17 The second is epidemic
and gossiping algorithms for maintaining data consistency
in distributed systems.4 Although both techniques—broad-
casts and epidemics—have assumptions that make them
inappropriate in their pure form to eventual consistency in
sensor networks, they are powerful techniques that Trickle
draws from. Trickle’s suppression mechanism is inspired by
the request/repair algorithm used in Scalable and Reliable
Multicast (SRM).5 Trickle adapts to local network density as
controlled floods do, but continually maintains consistency
in a manner similar to epidemic algorithms. Trickle also
takes advantage of the broadcast nature of the wireless chan-
nel, employing SRM-like duplicate suppression to conserve
precious transmission energy and scale to dense networks.

Exponential timers are a common protocol mechanism.
Ethernet, for example, uses an exponential backoff to pre-
vent collisions. While Trickle also has an exponential timer,
its use is reversed. Where Ethernet defaults to the smallest
time window and increases it only in the case of collisions,
Trickle defaults to the largest time window and decreases it
only in the case of an inconsistency. This reversal is indica-
tive of the different priorities in ultra-low-power networks:
minimizing energy consumption, rather than increasing
performance, is typically the more important goal.

In the case of dissemination, Trickle timers spread out
packet responses across nodes while allowing nodes to
estimate their degree and set their communication inter-
val. Trickle leads to energy efficient, density-aware dis-
semination not only by avoiding collisions through mak-
ing collisions rare, but also by suppressing unnecessary
retransmissions.

Instead of trying to enforce suppression on an abstrac-
tion of a logical group, which can become difficult in mul-
tihop networks with dynamically changing connectivity,
Trickle suppresses in terms of an implicit group: nearby
nodes that hear a broadcast. Correspondingly, Trickle does
not impose the overhead of discovering and maintaining
logical groups, and effortlessly deals with transient and
lossy wireless links. By relying on this implicit naming, the
Trickle algorithm remains very simple: implementations
can fit in under 2 K of code, and require a mere 11 bytes
of state.

Routing protocols discover other routers, exchange rout-
ing information, issue probes, and establish as well as tear

down links. All of these operations can be rate-controlled
by Trickle. For example, in our experiences exploring how
wireless sensor networks can adopt more of the IPv6 stack
in 6LoWPAN, Trickle provides a way to support established
ICMP-v6 mechanisms for neighbor discovery, duplicate ad-
dress detection, router discovery, and DHCP in wireless net-
works. Each of these involves advertisement and response.
Trickle mechanisms are a natural fit: they avoid loss where
density is large, allow prompt notifications of change and
adapt to low energy consumption when the configuration
stabilizes. By adopting a model of eventual consistency,
nodes can locally settle on a consistent state without requir-
ing any actions from an administrator.

Trickle was initially developed for distributing new pro-
grams into a wireless sensornet: the title of the original pa-
per is “Trickle: A Self-Regulating Algorithm for Code Propa-
gation and Maintenance in Wireless Sensor Networks.”13
Experience has shown it to have much broader uses. Trickle-
based communication, rather than flooding, has emerged
as the central paradigm for the basic multihop network
operations of discovering connectivity, data dissemination,
and route maintenance.

Looking forward, we expect the use of these kinds of tech-
niques to be increasingly common throughout the upper
layers of the wireless network stack. Such progress will not
only make existing protocols more efficient, it will enable
sensor networks to support layers originally thought infea-
sible. Viewing protocols as a continuous process of estab-
lishing and adjusting a consistent view of distributed data
is an attractive way to build robust distributed systems.

Acknowledgments
This work was supported, in part, by the Defense Depart-
ment Advanced Research Projects Agency (grants F33615-
01-C-1895 and N6601-99-2-8913), the National Science
Foundation (grants No. 0122599, IIS-033017, 0615308, and
0627126), by the California MICRO program, Intel Cor-
poration, DoCoMo Capital, Foundation Capital, and a by
Stanford Terman Fellowship. Research infrastructure was
provided by the National Science Foundation (grants No.
9802069). We would also like to thank Sylvia Ratnasamy for
her valuable insights into the early stages of this research,
as well as Jonathan Hui, for his ideas on applying Trickle to
new problems.�

 	 1. 	Arch Rock Corporation. An IPv6
Network Stack for Wireless Sensor
Networks. http://www.archrock.com.

	 2. 	Couto, D.D., Aguayo, D., Bicket, J.,
and Morris, R. A high-throughput
path mMetric for multi-hop wireless
routing. Proceedings of the Ninth
Annual International Conference on
Mobile Computing and Networking
(MobiCom), 2003.

	 3. 	Crossbow, Inc. Mote in Network
Programming User Reference. http://
webs.cs.berkeley.edu/tos/tinyos-1.x/
doc/Xnp.pdf.

	 4. 	Demers, A., Greene, D., Hauser, C.,
Irish, W., and Larson, J. Epidemic
Algorithms for Replicated Database
Maintenance. In Proceedings of the
Sixth Annual ACM Symposium on

Principles of Distributed Computing
(PODC), 1987.

	 5. 	Floyd, S., Jacobson, V., McCanne, S.,
Liu, C.-G., and Zhang, L. A reliable
multicast framework for light-
weight sessions and application
level framing. Proceedings of
the Conference on Applications,
Technologies, Architectures,
and Protocols for Computer
Communication (SIGCOMM), 1995.

	 6. 	Fonseca, R., Gnawali, O., Jamieson,
K., and Levis, P. Four bit wireless link
estimation. Proceedings of the Sixth
Workshop on Hot Topics in Networks
(HotNets VI), 2007.

	 7. 	Gnawali, O., Greenstein, B., Jang,
K.-Y., Joki, A., Paek, J., Vieira, M.,
Estrin, D., Govindan, R., and Kohler,

References

Philip Levis (pal@cs.stanford.edu)
Assistant Professor, Stanford University,
Stanford, CA, USA

Eric Brewer (brewer@cs.berkeley.edu)
Professor, U.C. Berkeley, Berkeley,
CA, USA

David Culler (culler@cs.berkeley.edu)
Professor, U.C. Berkeley, Berkeley,
CA, USA

David Gay (david.e.gay@intel.com) Senior
Researcher, Intel Research Berkeley,
Berkeley, CA, USA

Samuel Madden (madden@csail.mit.
edu) Associate Professor, MIT CSAIL,
Cambridge, MA, USA

© 2008 ACM 001-0782/08/0700 $5.00

Neil Patel (neilp@cs.stanford.edu) Ph.D.
Student, Stanford University, Stanford,
CA, USA

Joe Polastre (joe@sentilla.com) CTO,
Sentilla Corporation, Redwood City,
CA, USA

Scott Shenker (shenker@icsi.berkeley.
edu) Professor, U.C. Berkeley, Berkeley,
CA, USA

Robert Szewczyk (rob@sentilla.com)
Principal Engineer, Sentilla Corporation,
Redwood City, CA, USA

Alec Woo (awoo@archrock.com)
Technical Staff, Arch Rock Corporation,
San Francisco, CA, USA

E. The TENET architecture for tiered
sensor networks. Proceedings of the
Fourth International Conference
on Embedded Networked Sensor
Systems (Sensys), 2006.

	 8. 	Hill, J., Szewczyk, R., Woo, A., Hollar,
S., Culler, D.E., and Pister, K.S.J.
System architecture directions for
networked sensors. Proceedings of
the Ninth International Conference
on Architectural Support for
Programming Languages and
Operating Systems (ASPLOS), 2000.

	 9. 	Hui, J.W. and Culler, D. The dynamic
behavior of a data dissemination
protocol for network programming
at scale. Proceedings of the
Second International Conference
on Embedded Networked Sensor
Systems (SenSys), 2004.

	10. 	Intanagonwiwat, C., Govindan, R.,
and Estrin, D. Directed diffusion: a
scalable and robust communication
paradigm for sensor networks.
Proceedings of the Sixth Annual
International Conference on
Mobile Computing and Networking
(MobiCom), 2000.

	11. 	Levis, P., Gay, D., and Culler, D. Active
sensor networks. Proceedings of the
Second USENIX/ACM Symposium
on Network Systems Design and
Implementation (NSDI), 2005.

	12. 	 Levis, P., Lee, N., Welsh, M., and Culler,
D. TOSSIM: accurate and scalable
simulation of entire TinyOS applications.
Proceedings of the First ACM
Conference on Embedded Networked
Sensor Systems (SenSys), 2003.

	13. 	Levis, P., Patel, N., Culler, D., and
Shenker, S. Trickle: a self-regulating
algorithm for code maintenance
and propagation in wireless sensor
networks. Proceedings of the
First USENIX/ACM Symposium
on Network Systems Design and
Implementation (NSDI), 2004.

	14. 	Lin, K. and Levis, P. Data discovery
and dissemination with DIP.
Proceedings of the Seventh
International Symposium on
Information Processing in Sensor
Networks (IPSN), 2008.

	15. 	Madden, S., Franklin, M.J., Hellerstein,
J.M., and Hong, W. TinyDB: an
acquisitional query processing system
for sensor networks. Transactions on
Database Systems (TODS), 2005.

	16. 	Mao, Y., Wang, F., Qiu, L., Lam, S., and
Smith, J. S4: small state and small

stretch routing protocol for large
wireless sensor networks. Proceedings
of the Fourth USENIX Symposium
on Networked Systems Design and
Implementation (NSDI), 2007.

	17. 	Ni, S.-Y., Tseng, Y.-C., Chen, Y.-S.,
and Sheu, J.-P. The broadcast
storm problem in a mobile ad hoc
network. Proceedings of the Fifth
Annual International Conference on
Mobile Computing and Networking
(MobiCom), 1999.

	18. 	Paek, J. and Govindan, R. RCRT:
rate-controlled reliable transport
for wireless sensor networks.
Proceedings of the Fifth International
Conference on Embedded Networked
Sensor Systems (SenSys), 2007.

	19. 	Rangwala, S., Gummadi, R., Govindan,
R., and Psounis, K. Interference-
aware fair rate control in wireless
sensor networks. Proceedings of
the Conference on Applications,
Technologies, Architectures,
and Protocols for Computer
Communications (SIGCOMM), 2006.

	20. 	Sun Microsystems Laboratories.
Project Sun SPOT: Small
Programmable Object Technology.
http://www.sunspotworld.com/.

	21. 	TinyOS Network Protocol Working
Group. TEP 123: The Collection
Tree Protocol. http://www.tinyos.net//
tinyos-2.x/doc/txt/tep123.txt, 2007.

	22. 	Tolle, G. and Culler, D. Design of an
application-cooperative management
system for wireless sensor networks.
Proceedings of the Second European
Workshop of Wireless Sensor Netw
orks (EWSN), 2005.

	23. 	Wang, L. MNP: Multihop network
reprogramming service for sensor
networks. Proceedings of the
Second International Conference
on Embedded Networked Sensor
Systems (SenSys), 2004.

	24. 	Woo, A., Tong, T., and Culler, D.
Taming the underlying challenges of
multihop routing in sensor etworks.
Proceedings of the First ACM
Conference on Embedded Networked
Sensor Systems (SenSys), 2003.

	25. 	Yang, J., Soffa, M.L., Selavo, L.,
and Whitehouse, K. Clairvoyant:
a comprehensive source-level
debugger for wireless sensor
networks. Proceedings of the
Fifth International Conference
on Embedded Networked Sensor
Systems (SenSys), 2007.

References

ACM

Transactions On

Asian Language

Information

Processing

ISSN: 1530-0226
Order Code: 138
Price: $38 Professional Member

$33 Student Member
$160 Non-Member
$16 Air Service (for residents

outside North America only)

PRODUCT INFORMAT ION

TO PLACE AN ORDER

Contact ACM Member Services

Phone: 1.800.342.6626 (U.S. and Canada)

+1.212.626.0500 (Global)

Fax: +1.212.944.1318
(Hours: 8:30am—4:30pm, Eastern Time)

Email: acmhelp@acm.org
Mail: ACM Member Services

General Post Office
PO Box 30777
New York, NY 10087-0777 USA

www.acm.org/pubs/talip/

The Asian Language Information Processing
Transaction (TALIP) publishes high quality original
archival papers and technical notes in the areas of
computation and processing of information in Asian
languages and related disciplines. Some of the
subjects to be covered by this quarterly publication
are: Computational Linguistics; Linguistic Resources;
Hardware and Software Algorithms and Tools for
Asian Language Processing; Machine Translation; and
Multimedia Asian Information Processing. Emphasis
will be placed on the originality and the practical
significance of the reported research.

To learn more about TALIP, please visit
www.acm.org/pubs/talip/

SUBSCRIBE TODAY!

AD28

106 communications of the acm | July 2008 | vol. 51 | no. 7

