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Abstract
The wireless sensor network community approached net-
working abstractions as an open question, allowing answers 
to emerge with time and experience. The Trickle algorithm 
has become a basic mechanism used in numerous proto-
cols and systems. Trickle brings nodes to eventual consis-
tency quickly and efficiently while remaining remarkably 
robust to variations in network density, topology, and dy-
namics. Instead of flooding a network with packets, Trickle 
uses a “polite gossip” policy to control send rates so each 
node hears just enough packets to stay consistent. This 
simple mechanism enables Trickle to scale to 1000-fold 
changes in network density, reach consistency in seconds, 
and require only a few bytes of state yet impose a mainte-
nance cost of a few sends an hour. Originally designed for 
disseminating new code, experience has shown Trickle to 
have much broader applicability, including route mainte-
nance and neighbor discovery. This paper provides an over-
view of the research challenges wireless sensor networks 
face, describes the Trickle algorithm, and outlines several 
ways it is used today.

1. WIRELESS SENSOR NETWORKS
Although embedded sensing applications are extremely 
diverse, ranging from habitat and structural monitoring to 
vehicle tracking and shooter localization, the software and 
hardware architectures used by these systems are surpris-
ingly similar. The typical architecture is embodied by the 
mote platforms, such as those shown in Figure 1. A micro-
controller provides processing, program ROM, and data 
RAM, as well as analog-to-digital converters for sensor in-
puts, digital interfaces for connecting to other devices, and 
control outputs. Additional flash storage holds program 
images and data logs. A low-power CMOS radio provides 
a simple link layer. Support circuitry allows the system to 
enter a low-power sleep state, wake quickly, and respond to 
important events.

Four fundamental constraints shape wireless embedded 
system and network design: power supply, limited memory, 
the need for unattended operation, and the lossy and tran-
sient behavior of wireless communication. A typical power 
envelope for operating on batteries or harvesting requires a 
600 µW average power draw, with 1%% of the time spent in 
a 60 mW active state and the remainder spent in a very low 
power 6 µW passive state.

Maintaining a small memory footprint is a major require-
ment of algorithm design. Memory in low-cost, ultra-low-
power devices does not track Moore’s Law. One indication 
of this is that microcontroller RAM costs three orders of 
magnitude more than PC SRAM and five orders more than 
PC DRAM. More importantly, SRAM leakage current, which 
grows with capacity, dictates overall standby power con-
sumption and, hence, lifetime. Designs that provide large 
RAMs in conjunction with 32-bit processors go to great 
lengths to manage power. One concrete example of such 
nodes is the Sun SPOT,20 which enters a low-power sleep 
state by writing RAM contents to flash. Restoring memory 
from flash on wakeup uses substantial power and takes con-
siderable time. The alternative, taken in most sensor node 
designs, is to have just a few kilobytes of RAM. This, in turn, 
imposes limits on the storage complexity of network (and 
other) protocols, requiring routing tables, buffering, and 
caches be kept small. The historical trends of monetary and 
energy costs suggest these constraints are likely to last.

Wireless sensors are typically embedded in the physi-
cal environment associated with their application. Com-
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Figure 1: EPIC, KMote, and Telos motes. Each has an 8MHz  
microcontroller, 10kB of RAM, 48kB of program flash, and a  
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munication connectivity varies due to environmental and 
electromagnetic factors, with the additional constraint 
that no human being will shepherd the device to a bet-
ter setting, as with a cell phone or a laptop. The degree 
of the network at a node, i.e., the number of nodes in its 
communication neighborhood, is determined not by the 
desired network organization but by the physical device 
placement, which is often dictated by application require-
ments and physical constraints. There may be thousands 
of nodes in close proximity, or just a few. A single trans-
mission may be received by many devices, so any retrans-
mission, response, or even a simple acknowledgment, 
may cause huge contention, interference, and loss. Re-
dundancy is essential for reliability, but it also can be a 
primary cause of loss.

This last point is one of the key observations that have 
emerged from a decade of development of networking ab-
stractions for wireless sensor networks: the variety of net-
work topologies and densities across which sensor network 
protocols must operate calls for a polite, density-aware, local 
retransmission scheme. This paper describes the Trickle al-
gorithm, which uses such a communication pattern to pro-
vide an eventual consistency mechanism to protocols and 
services. In the past ten years, a key insight that has emerged 
from the wireless sensor network community is that many 
protocol problems can be reduced to maintaining even-
tual consistency. Correspondingly, Trickle has emerged as 
the core networking primitive at the heart of practical, effi-
cient, and robust implementations of many sensor network 
protocols and systems. Before diving into the details of the 
Trickle, however, we review how core sensor networking pro-
tocols work and differ from conventional networking proto-
cols, with the goal of exploring how a Trickle-like primitive 
satisfies some of their needs.

2. NETWORKING PROTOCOLS
Networking issues are at the core of embedded sensor net-
work design because radio communication—listening, 
receiving, and transmitting—dominates the active energy 
budget and defines system lifetime. The standard energy 
cost metric for multihop protocols, in either link layer 
meshing or network layer routing, is communication cost, 
defined as the number of individual radio transmissions 
and receptions. One protocol is more efficient than another 
if it can provide equivalent performance (e.g., throughput, 
latency, delivery ratio) at a lower communication cost. Pro-
tocols focus on minimizing transmissions and making sure 
transmitted packets arrive successfully.

Almost all sensor network systems rely on two multihop 
protocols for their basic operation: a collection protocol 
for pulling data out of a network and a dissemination 
protocol for pushing data into a network through one or 
more distinguished nodes or egress routers. Many higher 
level protocols build on dissemination and collection. For 
example, reprogramming services such as Deluge9 use 
dissemination to deliver commands to change program 
images. Management layers22 and remote source-level de-
buggers25 also use dissemination. Reliable transport pro-
tocols, such as RCRT,18 and rate control protocols such as 

IFRC,19 operate on collection trees. Point-to-point routing 
schemes, such as S4,16 establish overlays over multiple 
parallel collection topologies.

While collection and dissemination have the opposite 
communication patterns (all-to-one vs. one-to-all) and differ 
in reliability (unreliable vs. reliable), both maintain eventu-
ally consistent shared state between nodes. The rest of this 
section provides a high-level overview of these two protocol 
classes. It provides details on the challenging problems they 
introduce, and how some of them can be solved through 
eventual consistency.

2.1. Pushing data in: dissemination
One problem sensor network administrators face is dynami-
cally changing how a network collects data by changing the 
sampled sensors, the sampling rate, or even the code run-
ning on the nodes by disseminating the change to every 
node in a network. We begin with a discussion of dissemi-
nation protocols because they were the original impetus for 
Trickle and are its simplest application.

Early systems used packet floods to disseminate changes. 
Flooding protocols rebroadcast packets they receive. Flood-
ing is very simple—often just a line or two of code—but has 
many problems. First, floods are unreliable. Inevitably, some 
nodes do not receive the packet, so users typically repeatedly 
flood until every node receives it. Second, in high density 
networks, many nodes end up rebroadcasting packets at the 
same time. These messages collide and cause a form of net-
work collapse called a “broadcast storm.”17

Second-generation dissemination and network program-
ming systems like Xnp3 and TinyDB15 use an adaptive flood 
combined with a protocol to request missing messages. 
Adaptive flooding uses an estimate of the node density to 
limit the flooding rate. The missing message protocol al-
lows nodes to request the (hopefully few) missing messages 
from their neighbors. Unfortunately, getting such protocols 
to work well can be tricky, especially across a range of net-
work densities and object sizes.

Another way to look at dissemination protocols is that 
they ensure that every node has an eventually consistent 
version of some shared state, such as the value of a configu-
ration parameter or command. Data consistency is when 
all nodes have the same version of that state, and nodes re-
solve inconsistencies by updating neighbors to the newer 
version. Inductively, these definitions cause the network to 
converge on the most recent version. To disseminate a com-
mand, a system installs it on one node as a newer version 
and initiates the consistency protocol.

Casting dissemination as a data consistency problem 
means it does not provide full reliability. Eventual con-
sistency only promises to deliver the most recent ver-
sion to connected nodes. Disconnected nodes can and 
often do miss updates. In practice, however, this limita-
tion is rarely problematic. An administrator who chang-
es the data reporting rate three times then adds some 
new nodes and expects them to receive the most recent 
reporting rate, not all three. Similarly, when sending 
commands, users do not expect a new node to receive 
the entire history of all commands injected into a net-
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work. A node that is disconnected for several minutes 
will still receive the most recent command when it re-
connects, however.

Dissemination protocols succeed where flooding and its 
derivatives fail because they cast the problem of delivering 
data into maintaining data consistency among neighbors. 
This allows them to provide a very useful form of reliabil-
ity in arbitrary topologies with no a priori topology knowl-
edge or configurati on. An effective dissemination proto-
col, however, needs to bring nodes up to date quickly while 
sending few packets when every node has the most recent 
version: this is correspondingly a requirement for the un-
derlying consistency mechanism.

2.2. Pulling data out: collection
As the typical sensor network goal is to report observations 
on a remote environment, it is not surprising that data col-
lection is the earliest and most studied class of protocol. 
There are many collection protocol variations, similar to 
how there are many versions of TCP. These differences 
aside, all commonly used collection protocols provide 
unreliable datagram delivery to a collection point using 
a minimum-cost routing tree. Following the general goal 
of layer 3 protocols, cost is typically measured in terms of 
expected transmissions, or ETX:2 nodes send packets on 
the route that requires the fewest transmissions to reach 
a collection point.

The earliest collection protocol, directed diffusion, pro-
posed dynamically setting up collection trees based on data-
specific node requests.10 Early experiences with low-power 
wireless, however, led many deployments to move towards a 
much simpler and less general approach, where each node 
decides on a single next hop for all forwarded data traffic, 
thereby creating routing trees to fixed collection points. The 
network builds this tree by establishing a routing cost gra-
dient. A collection point has a cost of 0. A node calculates 
the cost of each of its candidate next hops as the cost of that 
node plus the cost of the link to it. Inductively, a node’s cost 
is the sum of the costs of the links in its route. Figure 2 illus-
trates an example topology.

Collection variations boil down to how they quantify and 
calculate link costs, the number of links they maintain, how 
they propagate changes in link state amongst nodes, and 
how frequently they re-evaluate link costs and switch par-
ents. Early protocols used hop-counts8 as a link cost met-
ric, similar to MANET protocols such as AODV and DSDV; 
second-generation protocols such as MintRoute24 and Srcr2 
estimated the transmissions per delivery on a link using pe-
riodic broadcasts; third-generation protocols, such as Mul-
tiHopLQI, added physical layer signal quality to the metric; 
current generation collection protocols, such as Collection 
Tree Protocol (CTP), unify these approaches, drawing on in-
formation from multiple layers.6

Most collection layers operate as anycast protocols. A net-
work can have multiple data collection points, and collec-
tion automatically routes to the closest one. As there is only 
one destination—any collection point—the required rout-
ing state can be independent of network density and size. 
Most protocols use a small, fixed-size table of candidate next 

hops. They also attempt to strike a balance between route 
stability and churn to discover new, possibly better parents 
by switching parents infrequently and using damping mech-
anisms to limit the rate of change.

As collection protocols have improved and become bet-
ter at choosing routes, reducing control traffic has become 
an increasingly important component of efficiency. While 
nodes can piggyback some control information on data 
packets, they need to send link-layer broadcasts to their lo-
cal neighbors to advertise their presence and routing cost. 
Choosing how often to send these advertisements introduc-
es a difficult design tension. A slow rate imposes a low over-
head, but limits how quickly the tree can adapt to failures or 
link changes, making its data traffic less efficient. A fast rate 
imposes a higher overhead, but leads to an agile tree that 
can more accurately find the best route to use.

This tension is especially challenging when a network 
only collects data in response to events, and so can go 
through periods of high and low data rates. Having a high 
control rate during periods of low traffic is highly inef-
ficient, while having a low control rate during periods of 
high traffic makes the tree unable to react quickly enough 
to changes. When starting a burst of transmissions, a node 
may find that link costs have changed substantially neces-
sitating a change in its route and, as a result, advertised 
routing cost. Changes in costs need to propagate quickly, or 
the topology can easily form routing loops. For example, if a 
link’s cost increases significantly, then a node may choose 
one of its children as its next hop. Since the protocol state 
must be independent of the topology, a node cannot avoid 
this by simply enumerating its children (constraining tree 
in-degree to a constant leads to inefficient, circuitous to-
pologies in dense networks).

Current protocols, such as CTP21 and ArchRock’s routing 
layer,1 resolve this tension by reducing the routing gradient 
as a data consistency problem. The gradient is consistent as 
long as children have a higher cost than their parent. An in-
consistency can arise when costs change enough to violate 

Figure 2: Sample collection tree, showing per-link and node costs. 
The cost of a node is its next hop’s cost plus the cost of the link.
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this constraint. As long as routing costs are stable, nodes 
can assume the gradient is consistent and avoid exchanging 
unnecessary packets.

2.3. A general mechanism
The examples above described how two very different proto-
cols can both address a design tension by reducing a prob-
lem to maintaining data consistency. Both examples place 
the same requirements on a data consistency mechanism: 
it needs to resolve inconsistencies quickly, send few pack-
ets when data is consistent, and require very little state. The 
Trickle algorithm, discussed in the next section, meets these 
three requirements.

3. Trickle
The Trickle algorithm establishes a density-aware local 
broadcast with an underlying consistency model that guides 
when a node communicates. When a node’s data does not 
agree with its neighbors, it communicates quickly to re-
solve the inconsistency. When nodes agree, they slow their 
communication rate exponentially, such that in a stable 
state nodes send at most a few packets per hour. Instead of 
flooding a network with packets, the algorithm controls the 
send rate so each node hears a small trickle of packets, just 
enough to stay consistent. Furthermore, by relying only on 
local broadcasts, Trickle handles network repopulation, is 
robust to network transience, loss, and disconnection, and 
requires very little state (implementations use 4–11 bytes).

While Trickle was originally designed for reprogramming 
protocols (where the data is the code of the program being 
updated), experience has shown it to be a powerful mecha-
nism that can be applied to wide range of protocol design 
problems. For example, routing protocols can use Trickle to 
ensure that nodes in a given neighborhood have consistent, 
loop-free routes. When the topology is consistent, nodes 
occasionally gossip to check that they still agree, and when 
the topology changes they gossip more frequently, until they 
reach consistency again.

For the purpose of clearly explaining the reasons be-
hind Trickle’s design, all of the experimental results in 
this section are from simulation, in some cases very high-
level abstract simulators. In practice, Trickle’s simplicity 
means it works remarkably well in the far more challeng-
ing and difficult real world. The original Trickle paper,13 as 
well as Deluge9 and DIP14 report experimental results from 
real networks.

3.1. Algorithm
Trickle’s basic mechanism is a randomized, suppressive 
broadcast. A Trickle has a time interval of length t and a 
redundancy constant k. At the beginning of an interval, a 
node sets a timer t in the range of t-2, t. When this timer fires, 
the node decides whether to broadcast a packet contain-
ing metadata for detecting inconsistencies. This decision 
is based on what packets the node heard in the interval be-
fore t. A Trickle maintains a counter c, which it initializes to 
0 at the beginning of each interval. Every time a node hears 
a Trickle broadcast that is consistent with its own state, it 
increments c. When it reaches time t, the Trickle broadcasts 

if c < k. Randomizing t spreads transmission load over a sin-
gle-hop neighborhood, as nodes take turns being the first 
node to decide whether to transmit. Figure 3 summarizes 
Trickle’s parameters.

3.2. Scalability
Transmitting only if c < k makes a Trickle density aware, as 
it limits the transmission rate over a region of the network 
to a factor of k. In practice, the transmission load a node ob-
serves over an interval is O(k . log(d) ), where d is the network 
density. The base of the logarithm depends on the packet 
loss rate PLR: it is P

1—L–R.
This logarithmic behavior represents the probability that 

a single node misses a number of transmissions. For exam-
ple, with a 10% loss rate, there is a 10% chance that a node will 
miss a single packet. If a node misses a packet, it will trans-
mit, resulting in two transmissions. There is correspondingly 
a 1% chance a node will miss two packets from other nodes, 
leading to three transmissions. In the extreme case of a 100% 
loss rate, each node is by itself: transmissions scale linearly.

Figure 4 shows this scaling. The number of transmissions 
scales logarithmically with density and the slope line (base 
of the logarithm) depends on the loss rate. These results 
come from a Trickle-specific algorithmic simulator we im-
plemented to explore the algorithm’s behavior under con-
trolled conditions. Consisting of little more than an event 
queue, this simulator allows configuration of all of Trickle’s 
parameters, run duration, and the boot time of nodes. It 
models a uniform packet loss rate (same for all links) across 
a single hop network. Its output is a packet send count.

Figure 3: Trickle parameters and variables.

t	 Communication interval length

T	 Timer value in range t-2
, t

C	 Communication counter

K	 Redundancy constant

t
l	 Smallest t

th	 Largest t  

Figure 4: Trickle’s transmissions per interval scales logarithmically 
with density. The base of the logarithm is a function of the packet 
loss rate (the percentages)
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3.3. Synchronization
The scaling shown in Figure 4 assumes that all nodes are 
synchronized, such that the intervals during which they are 
awake and listening to their radios line up perfectly. Inevita-
bly, this kind of time synchronization imposes a communi-
cation, and therefore energy, overhead. While some networks 
can provide time synchronization to Trickle, others cannot. 
Therefore, Trickle is designed to work in both the presence and 
absence of synchronization.

Trickle chooses t in the range of (t-2, t] rather than (0, t] be-
cause the latter causes the transmission load in unsynchro-
nized networks to scale with O(d). This undesirable scaling 
occurs due to the short listen problem, where some subset of 
motes gossip soon after the beginning of their interval. They 
listen for only a short time, before anyone else has a chance to 
speak up. This is not a problem if all of the intervals are syn-
chronized, since the first gossip will quiet everyone else. How-
ever, if nodes are not synchronized, a node may start its interval 
just after another node’s broadcast, resulting in missed mes-
sages and increased transmission load.

Unlike loss, where the extra O(log(d) ) transmissions keep 
the worst case node that missed several packets up to date, the 
additional transmissions due to the short listen problem are 
completely wasteful. Choosing t in the range of (t-2, t] removes 
this problem: it defines a “listen-only” period of the first half of 
an interval. A listening period improves scalability by enforcing 
a simple constraint. If sending a message guarantees a silent 
period of some time T that is independent of density, then the 
send rate is bounded above (independent of the density). When 
a mote transmits, it suppresses all other nodes for at least the 
length of the listening period. Figure 5 shows how a listen peri-
od of t-2. bounds the total sends in a lossless single-hop network 
to be 2k. With loss, transmissions scale as O(2k . log(d) ) per in-
terval, returning scalability to the O(log(d) ) goal.

3.4. Controlling t
A large t (gossiping interval) leads to a low communication 
overhead, but propagates information slowly. Conversely, 

a small t imposes a higher communication overhead, but 
propagates data more quickly. These two goals, rapid propa-
gation and low overhead, are fundamentally at odds: the for-
mer requires communication to be frequent, while the latter 
requires it to be infrequent.

By dynamically scaling t, Trickle can quickly make data 
consistent with a very small cost. t has a lower bound, tl, and 
an upper bound th. When t expires without a node receiv-
ing a new update, t doubles, up to a maximum of th. When 
a node detects a data inconsistency (e.g., a newer version 
number in dissemination, a gradient constraint violation in 
collection), it resets t to be tl.

Essentially, when there is nothing new to say, motes gos-
sip infrequently: t is set to th. However, as soon as a mote 
hears something new, it gossips more frequently, so those 
who have not heard the new data receive it quickly. The chat-
ter then dies down, as t grows from tl to th.

By adjusting t in this way, Trickle can get the best of both 
worlds: rapid consistency and low overhead when the net-
work is consistent. The cost per inconsistency (shrinking t) 
is approximately log(-t2

h 

l
-) additional sends. For a tl of 1 s and 

a th of 1 h, this is a cost of 11 packets to obtain a 3000-fold 
decrease in the time it takes to detect an inconsistency (or, 
from the other perspective, a 3000-fold decrease in mainte-
nance overhead). The simple Trickle policy, “every once in a 
while, transmit unless you have heard a few other transmis-
sions,” can be used both to inexpensively maintain that the 
network is consistent as well as quickly inform nodes when 
there is an inconsistency.

Figure 6 shows pseudocode for the complete Trickle algorithm.

3.5. Case study: Maté
Maté is a lightweight bytecode interpreter for wireless sen-
sornets.11 Programs are tiny sequences of optimized byte-
codes. The Maté runtime uses Trickle to install new pro-
grams in a network, by making all nodes consistent to the 
most recent version of a script.

Maté uses Trickle to periodically broadcast version sum-
maries. In all experiments, code routines fit in a single pack-
et (30 bytes). The runtime registers routines with a Trickle 
propagation service, which then maintains all of the neces-
sary timers and broadcasts, notifying the runtime when it 
installs new code. Maté uses a very simple consistency reso-
lution mechanism. It broadcasts the missing routines three 
times: 1, 3, and 7 s after hearing there is an inconsistency.

Figure 7 shows simulation results of Maté’s behavior during 
a reprogramming event. These results come from the TOSSIM 
simulator,12 which simulates entire sensornet applications and 

Figure 5: Without a listen-only period, Trickle’s transmissions scale 
with a square root of the density when intervals are not synchro-
nized. With a listen-only period of duration t-2, the transmissions 
per interval asymptotically approach 2k. The black line shows how 
Trickle scales when intervals are synchronized. These results are 
from lossless networks.
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Figure 6: Trickle pseudocode.

Event	A ction

t Expires	D ouble t, up to th. Reset c, pick a new t*

t Expires	I f c < k, transmit

Receive consistent data	I ncrement c

Receive inconsistent data	S et t to t
l. Reset c, pick a new t

*t is picked from the range [t-
2
, t]
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models wireless connectivity at the bit level. In these experi-
ments, tl is 1 s and th is 1 min.

Each simulation had 400 nodes regularly placed in a 
square grid with node spacings of 5, 10, 15, and 20 ft. By 
varying network density, we were able to examine how 
Trickle’s propagation rate scales over different loss rates 
and physical densities. Density ranged from a 5 ft spac-
ing between nodes up to 20 ft (the networks were 95 × 95 
to 380 × 380). Crossing the network in these topologies 
takes from six to forty hops.a Time to complete propagation 
varied from 16 s in the densest network to about 70 s for the 
sparsest, representing a latency of 2.7 and 1.8 s per hop, re-
spectively. The minimum per-hop Trickle latency is 2—

ti and 
the consistency mechanism broadcasts a routine 1 s after 
discovering an inconsistency, so the best case latency is 1.5 
s per hop. Despite an almost complete lack of coordination 
between nodes, Trickle still is able to cause them to coop-
erate efficiently.

Figure 8 shows how adjusting th changes the propaga-
tion time for the 5 and 20 ft spacings. Increasing th from 
1 to 5 min does not significantly affect the propagation 
time; indeed, in the sparse case, it propagates faster un-
til roughly the 95th percentile. This result indicates that 
there may be little trade-off between the maintenance 
overhead of Trickle and its effectiveness in the face of a 
propagation event.

A very large th can increase the time to discover incon-
sistencies to be approximately -t2

h -. However, this is only true 
when two stable subnets (t = th) with different code recon-
nect. If new code is introduced, it immediately triggers 
nodes to reset t to tl, bringing them quickly to a consistent 
state.

The Maté implementation of Trickle requires few system 
resources. It requires approximately 70 bytes of RAM; half of 
this is a message buffer for transmissions, a quarter is point-
ers to code routines. Trickle itself requires only 11 bytes for 
its counters; the remaining RAM is for internal coordination 
(e.g., pending and initialization flags). The executable code 
is 1.8 K (90 lines of code). Other implementations have simi-
lar costs. The algorithm requires few CPU cycles, and can 
operate at a very low duty cycle.

3.6. Uses and improvements
Trickle is not just used by Maté; it and its derivatives are 
used in almost every dissemination protocol today. The Del-
uge binary dissemination protocol for installing new sensor 
node firmware uses Trickle to detect when nodes have dif-
ferent firmware versions9 (tl = 500 ms, th = 1.1 h). The MNP 
binary dissemination protocol (tl = 16 s, th = 512 s) adjusts 
Trickle so that nodes with more neighbors are more likely 
to send updates by preventing low degree nodes from sup-
pressing high degree ones.23 The Drip command layer of the 
Sensornet Management System uses Trickle (tl = 100 ms, th 
= 32 s) to install commands.22 The Tenet programming ar-

chitecture uses Trickle (tl = 100 ms, th = 32 s) to install small 
dynamic code tasks.7

In the past few years, as collection protocols have im-
proved in efficiency, they have also begun to use Trickle. The 
CTP, the standard collection layer in the TinyOS operating 
system distribution,21 uses Trickle timers (tl = 64 ms, th = 1 h) 
for its routing traffic. The 6LoWPAN IPv6 routing layer in 
Arch Rock’s software uses Trickle to keep IPv6 routing tables 
and ICMP neighbor lists consistent.1 As protocols continue 
to improve, Trickle’s efficacy and simplicity will cause it to 
be used in more protocols and systems.

One limitation with Trickle as described in this paper 
is that its maintenance cost grows O(n) with the number 
of data items, as nodes must exchange version numbers. 
This growth may be a hindering factor as Trickle’s use in-
creases. Recent work on the DIP protocol addresses this 

Figure 7: Time to consistency in 20 × 20 TOSSIM grids (seconds).  
The hop count values in each legend are the expected number of 
transmissions necessary to get from corner to corner, considering 
loss.
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Figure 8: Rate nodes reach consistency for different ths in TOSSIM. A 
larger th does not slow reaching consistency.
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concern by using a combination of hash trees and ran-
domized searches, enabling the maintenance cost to re-
main O(1) while imposing a O(log(n) ) discovery cost.14

4. Discussion
Wireless sensor networks, like other ad hoc networks, do not 
know the interconnection topology a priori and are typically 
not static. Nodes must discover it by attempting to commu-
nicate and then observing where communication succeeds. 
In addition, the communication medium is expected to be 
lossy. Redundancy in such networks is both friend and foe, 
but Trickle reinforces the positive aspects and suppresses 
the negative ones.

Trickle draws on two major areas of prior research. The 
first area is controlled, density-aware flooding algorithms for 
wireless and multicast networks.5, 17 The second is epidemic 
and gossiping algorithms for maintaining data consistency 
in distributed systems.4 Although both techniques—broad-
casts and epidemics—have assumptions that make them 
inappropriate in their pure form to eventual consistency in 
sensor networks, they are powerful techniques that Trickle 
draws from. Trickle’s suppression mechanism is inspired by 
the request/repair algorithm used in Scalable and Reliable 
Multicast (SRM).5 Trickle adapts to local network density as 
controlled floods do, but continually maintains consistency 
in a manner similar to epidemic algorithms. Trickle also 
takes advantage of the broadcast nature of the wireless chan-
nel, employing SRM-like duplicate suppression to conserve 
precious transmission energy and scale to dense networks.

Exponential timers are a common protocol mechanism. 
Ethernet, for example, uses an exponential backoff to pre-
vent collisions. While Trickle also has an exponential timer, 
its use is reversed. Where Ethernet defaults to the smallest 
time window and increases it only in the case of collisions, 
Trickle defaults to the largest time window and decreases it 
only in the case of an inconsistency. This reversal is indica-
tive of the different priorities in ultra-low-power networks: 
minimizing energy consumption, rather than increasing 
performance, is typically the more important goal.

In the case of dissemination, Trickle timers spread out 
packet responses across nodes while allowing nodes to 
estimate their degree and set their communication inter-
val. Trickle leads to energy efficient, density-aware dis-
semination not only by avoiding collisions through mak-
ing collisions rare, but also by suppressing unnecessary 
retransmissions.

Instead of trying to enforce suppression on an abstrac-
tion of a logical group, which can become difficult in mul-
tihop networks with dynamically changing connectivity, 
Trickle suppresses in terms of an implicit group: nearby 
nodes that hear a broadcast. Correspondingly, Trickle does 
not impose the overhead of discovering and maintaining 
logical groups, and effortlessly deals with transient and 
lossy wireless links. By relying on this implicit naming, the 
Trickle algorithm remains very simple: implementations 
can fit in under 2 K of code, and require a mere 11 bytes 
of state.

Routing protocols discover other routers, exchange rout-
ing information, issue probes, and establish as well as tear 

down links. All of these operations can be rate-controlled 
by Trickle. For example, in our experiences exploring how 
wireless sensor networks can adopt more of the IPv6 stack 
in 6LoWPAN, Trickle provides a way to support established 
ICMP-v6 mechanisms for neighbor discovery, duplicate ad-
dress detection, router discovery, and DHCP in wireless net-
works. Each of these involves advertisement and response. 
Trickle mechanisms are a natural fit: they avoid loss where 
density is large, allow prompt notifications of change and 
adapt to low energy consumption when the configuration 
stabilizes. By adopting a model of eventual consistency, 
nodes can locally settle on a consistent state without requir-
ing any actions from an administrator.

Trickle was initially developed for distributing new pro-
grams into a wireless sensornet: the title of the original pa-
per is “Trickle: A Self-Regulating Algorithm for Code Propa-
gation and Maintenance in Wireless Sensor Networks.”13 
Experience has shown it to have much broader uses. Trickle-
based communication, rather than flooding, has emerged 
as the central paradigm for the basic multihop network 
operations of discovering connectivity, data dissemination, 
and route maintenance.

Looking forward, we expect the use of these kinds of tech-
niques to be increasingly common throughout the upper 
layers of the wireless network stack. Such progress will not 
only make existing protocols more efficient, it will enable 
sensor networks to support layers originally thought infea-
sible. Viewing protocols as a continuous process of estab-
lishing and adjusting a consistent view of distributed data 
is an attractive way to build robust distributed systems.
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