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1. INTRODUCTION

TinyOS [Hill et al. 2000] is an OS for wireless network embedded systems, with
an emphasis on reacting to external events and extremely low-power operation.
Rather than a monolithic OS, TinyOS is a set of components that are included
as-needed in applications. A significant challenge in TinyOS development is
designing and implementing flexible, reusable components. Programming ab-
stractions for sensor networks, where TinyOS is the current OS-of-choice, are
an area of active research and investigation [Levis et al. 2004]
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Writing solid, reusable software components is hard. Doing so for sensor
networks is even harder. Limited resources (e.g., 4 KB of RAM) and strict en-
ergy budgets (e.g., averages below 1 mW) lead developers to write application-
specific versions of many services. While specialized software solutions enable
developers to build efficient systems, they are inherently at odds with reusable
software.

Software design patterns are a well-accepted technique to promote code reuse
[Gamma et al. 1995, p.1]:

These patterns solve specific design problems and make object-oriented de-
signs more flexible, elegant, and ultimately reusable.

Design patterns identify sets of common and recurring requirements and
define a pattern of object interactions that meet these requirements. However,
these patterns are not directly applicable to TinyOS programming. Most design
patterns focus on the problems faced by large, object-oriented programs; in sen-
sor networks the challenges are quite different. These challenges include [Levis
et al. 2004, Section 2.1]:

� Robustness: once deployed, a sensor network must run unattended for
months or years.

� Low resource usage: sensor network nodes, colloquially known as motes, in-
clude very little RAM, and run off batteries.

� Diverse service implementations: applications should be able to choose be-
tween multiple implementations of, e.g., multihop routing.

� Hardware evolution: mote hardware is in constant evolution; applications
and most system services must be portable across hardware generations.

� Adaptability to application requirements: applications have very different
requirements in terms of lifetime, communication, sensing, etc.

nesC [Gay et al. 2003]—TinyOS’s implementation language—was designed
with these challenges in mind; it is a component-based language with an event-
based execution model. nesC components have similarities to objects: they en-
capsulate state and interact through well-defined interfaces. They also have
significant differences: there is no inheritance, no dynamic dispatch, and no dy-
namic object allocation—the set of components and their interactions are fixed
at compile-time rather than at runtime. This promotes reliability and efficiency,
but programmers cannot easily apply idioms or patterns from object-oriented
languages, and, when they do, the results are rarely effective.

In this paper, we present a preliminary set of eight design patterns, which
show how nesC can be used to build components that address TinyOS’s chal-
lenges. These patterns are based on our experiences designing and writing
TinyOS components and applications, and on our examination of code written
by others. These patterns have driven, and continue to drive, the development
of nesC. For instance, the uniqueCount function was introduced in nesC version
1.1 to support the ServiceInstance pattern; nesC version 1.2 (recently released)
includes generic components, which simplify expression of some of the patterns
presented here (see Section 4).
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This paper contributes to embedded system programming in three ways.
First, these design patterns provide insight on how programming network em-
bedded systems is structurally different than traditional software and how
these different factors motivate software design. We believe that these patterns
have applicability beyond the sensor network space: TinyOS’s requirements
are not radically different from those of many other embedded systems. Sec-
ond, we explore how a few simple features of the nesC language and compiler,
particularly parameterized interfaces, unique identifiers, and inlining, are nec-
essary for concise and efficient expression of these patterns. Finally, this paper
helps researchers working with TinyOS write effective programs. The youth of
TinyOS precludes us from having a corpus of tens of millions of lines of code
and decades of experience, as traditional design pattern researchers do: these
patterns are an initial attempt to analyze and distill TinyOS programming.

Although prior work has explored object-oriented design patterns for embed-
ded and real-time devices [PatternsW1 2001; PatternsW2 2002; PatternsW3
2002; Douglass 2002; Girod et al. 2004], they deal with platforms that have
orders of magnitude more resources (e.g., a few mega bytes of RAM), and, cor-
respondingly, more traditional programming models, including threads, instan-
tiation, and dynamic allocation.

An alternative approach to building reusable services for sensor networks is
offered by SNACK [Greenstein et al. 2004], which is composed of a library of
configurable components; a SNACK program is a declarative specification of the
components a program needs and their connections. SNACK relies on a compiler
to figure out which services should be instantiated (compatible components are
shared, e.g., two requests for a timer at the same rate), with what parameters
and exactly how they should be connected. Effectively, SNACK aims to make it
easy to build an application from an existing set of reusable services; our design
patterns show ways of building services so that they are more reusable.

Section 2 provides background on the nesC language. Section 3 presents
eight TinyOS design patterns, describing their motivation, consequences, and
representation in nesC, as well as listing several TinyOS components that use
them.1 Section 4 discusses the patterns in the light of nesC and TinyOS devel-
opment, and Section 5 concludes.

2. BACKGROUND

Using a running example of an application component that samples two sensors,
we describe the aspects of nesC relevant to the patterns we present in Section 3.

nesC [Gay et al. 2003] is a C-based language with two distinguishing fea-
tures: a programming model where components interact via interfaces, and
an event-based concurrency model with run-to-completion tasks and interrupt
handlers. The run-to-completion model precludes blocking calls. Lengthy oper-
ations and system services, such as sampling a sensor or sending a packet, are
split-phase operations, where a command to start the operation returns imme-
diately and a callback event indicates when the operation completes (Figure 2,

1These components can be found in the TinyOS distributions, available from http://www.
tinyos.net.
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Fig. 1. Sample component assembly. Solid rectangles are modules; open rectangles are configura-
tions. Triangles pointing into a rectangle are provided interfaces; triangles pointing out are used
interfaces. Dotted lines are “wires” added by configuration AppC; full lines are “wires” added by
configuration SensorsC. Component names are in bold.

see later). To promote reliability and analyzability, nesC does not support dy-
namic memory allocation or function pointers; all component interactions are
specified and known at compile-time.

2.1 Components and Interfaces

nesC programs are assemblies of components, connected (“wired”) via named
interfaces that they provide or use. Figure 1 graphically depicts the assembly of
six components connected via interfaces of type Sense and Initialize. Modules
are components implemented with C code, while configurations are components
implemented by wiring other components together. In the example figure, Main
(a “system boot” component), LightM, TempM, and AppM are modules, while AppC and
SensorsC are configurations. The example shows that configuration AppC “wires”
(i.e., connects) AppM’s Sensor1 interface to SensorsC’s Light interface, etc.

Modules and configurations have a name, specification, and implementation:

module AppM {
provides interface Initialize as Init;
uses interface Sense as Sensor1;
uses interface Sense as Sensor2;

}
implementation { ... }

declares that AppM (from Figure 1) is a module that provides an interface named
Init and uses two interfaces, named Sensor1 and Sensor2. Each interface has
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Fig. 2. Typical split-phase operation.

a type, in this case either Initialize or Sense. A component name denotes a
unique, singleton component2: references to Main in different configurations
(see below) all refer to the same component.

An interface type specifies the interaction between a provider component
and a user component as a set of named functions:

interface Initialize { // component initialization
command void init();

}

interface Sense { // split-phase sensor read
command void sense();
event void senseDone(int value);

}

This interaction is bidirectional: commands are invocations from the user to
the provider, while events are from the provider to the user. Interface type Sense

represents a typical split-phase operation: providers must implement the sense

command, which represents a request to read a sensor; users must implement
the senseDone event, which the provider signals when the sensor read completes.
To make the two directions syntactically explicit, nesC events are signaled while
commands are called. In both cases, the actual interaction is a function call.
Figure 2 shows this relationship for AppM and TempM.

As a module, AppM must provide C implementations of commands in its pro-
vided interfaces and of events in its used interfaces. It can call or signal any of
its commands or events, and post tasks for later execution:

module AppM { ... }
implementation {
int sum = 0;
task void startSensing() {
call Sensor1.sense();

}
command void Init.init() {
post startSensing();

}
event void Sensor1.senseDone(int val) {
sum += val;
call Sensor2.sense();

}

2We discuss in Section 4 how version 1.2 of nesC changes this and its effect on design patterns.
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event void Sensor2.senseDone(int val) {
sum += val;

}
}

As this example shows, a command or event f of an interface I is named I. f
and is similar to a C function except for the extra syntactic elements such as
command, event and call. Modules encapsulate their state: all of their variables
(e.g., sum) are private. The Init.init command posts a task to defer the call
to Sensor1.sense as the sensor may not yet be initialized (see the discussion of
multiple wiring below).

2.2 Configurations

A configuration implements its specification by wiring other components to-
gether and equating its own interfaces with interfaces of those components.
Two components can interact only if some configuration has wired them to-
gether:

configuration SensorsC {
provides interface Sense as Light;
provides interface Sense as Temp;

}
implementation {
components Main, LightM, TempM;

Main.Init -> LightM.Init;
Main.Init -> TempM.Init;

Light = LightM.Sensor;
Temp = TempM.Sensor;

}

SensorsC “assembles” components LightM and TempM into a single component pro-
viding an interface for each sensor: Temp is equated to TempM’s Sensor interface,
and Light with LightM’s Sensor interface. In addition, SensorsC wires the system’s
initialization interface (Main.Init) to the initialization interfaces of LightM and
TempM.

Finally, AppC, the configuration for the whole application, wires module AppM

(which uses two sensors) to SensorsC (which provides two sensors), and ensures
that AppM is initialized by wiring it to Main.Init:

configuration AppC { }
implementation {
components Main, AppM, SensorsC;

Main.Init -> AppM.Init;
AppM.Sensor1 -> SensorsC.Light;
AppM.Sensor2 -> SensorsC.Temp;

}
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In this application, interface Main.Init is multiply wired. AppC connects it
to AppM.Init, while SensorsC connects it to LightM.Init and TempM.Init. The
call Init.init() in module Main compiles to an invocation of all three init()

commands,3 in some unspecified order. Thus, it is possible that AppM.init will
be called before LightM.init. Hence, the need for the deferred execution of the
call to Sensor1.sense in AppM.

2.3 Parameterized Interfaces

A parameterized interface is an interface array. For example, this module has
a separate instance of interface A for each value of id:

module Example {
provides interface Initialize as Inits[int id];
uses interface Sense as Sensors[int id];

} ...

In a module, commands and events of parameterized interfaces have an extra
argument:

command void Inits.init[int id1]() {
call Sensors.sense[id1]();

}
event void Sensors.senseDone[int i](int v) {
}

A configuration can wire a single interface by specifying its index:

configuration ExampleC {
}
implementation {
components Main, Example;
components TempM, LightM;

Main.Init -> Example.Inits[42];
Example.Sensors[42] -> TempM.Sensor;
Example.Sensors[43] -> LightM.Sensor;

}

When Main’s Init.init command is called, Example’s Inits.init command will
be executed with id = 42. This will cause Example to call Sensor[42].sense, which
connects to TempM.sense.

A configuration can wire or equate a parameterized interface to another
parameterized interface. This equates Example.Sensors[i] to ADC[i] for all values
of i:

provides interface Sense as ADC[int id];
...
Example.Sensors = ADC;

3If a multiply wired function has nonvoid result, nesC combines the results via a programmer-
specified function. [Gay et al. 2003].
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2.4 unique and uniqueCount

In many cases, a programmer wants to use a single element of a parameterized
interface and does not care which one, as long as no one else uses it. This
functionality is supported by nesC’s unique construction:

AppM.Timer1 -> TimerC.Timer[unique("Timer")];
AppM.Timer2 -> TimerC.Timer[unique("Timer")];

All uses of unique with the same argument string (a constant) return different
values, from a contiguous sequence starting at 0. It is also often useful to know
the number of different values returned by unique (e.g., a service may wish to
know how many clients it has). This number is returned by the uniqueCount

construction:

timer_t timers[uniqueCount("Timer")];

2.5 Static Programming

The nesC language supports embedded programming by providing a compo-
nent model, compile-time composition, a concurrency model, and two simple
functions, which it resolves at compile time. Individually, each one changes
programming methodologies, compiler techniques, and software structure in a
small way. Together, however, these features lead to programs that differ greatly
from their counterparts written in C or C-like object-oriented languages.

The principal difference is that nesC programs try to push as many de-
cisions to compile-time as possible; we refer to this as a static program-
ming model. This model has two main features: static call paths and static
allocation. A nesC component preserves flexibility by referring to exter-
nal functions via interfaces, but configurations bind callers and callees at
compile-time, so complete call paths are defined statically. For example, the
configuration

AppM.Sensor1 -> SensorsC.Light;

creates two bindings: the command AppM.Sensor1.sense to SensorsC.Light. sense

and the event SensorsC.Light.sendDone to AppM.Sensor1.senseDone.
C and C-like object-oriented languages that have a global namespace achieve

similar binding flexibility through runtime mechanisms. For example, if a C
program does not want to explicitly name its callee, it uses function point-
ers (e.g., vnodes in the virtual file system [Kleiman 1986]). In C++, Java,
and C# the standard technique is to use an interface or class. Static call
paths allows the nesC compiler to optimize heavily across call boundaries (see
Section 4.3).

The ability to count at compile-time leads to very different allocation strate-
gies by allowing variably-sized allocation at compile-time: entities are “allo-
cated” with unique, and space is reserved with uniqueCount (Section 2.4). For ex-
ample, a program that writes four different logging files can, at compile-time,
definitively state that it needs to allocate the state for four file handles. Pro-
grammers do not have to guess the system’s resource usage, potentially wasting
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space or risking runtime failure. This determinism and efficiency comes by sac-
rificing flexibility: a nesC program cannot, e.g., readily implement a file server
that can handle an unbounded number of clients and open files. However, such
requirements are not typical for sensor networks (and similar embedded pro-
gramming tasks): programs are designed for specific applications, with known
worst-case resource requirements. The increased reliability and simpler pro-
gramming of nesC’s static approach almost always outweigh the costs.

2.6 Summary

The basic unit of TinyOS/nesC programming is a component, which provides
and uses interfaces. An application is a set of components whose interfaces
have been wired together. Because all TinyOS services are components that
follow a static programming paradigm, nesC can optimize call paths across
components, eliminate dead code and variables, and provide support for efficient
state allocation. This approach provides a great deal of structure to embedded
programming and can support good software techniques. However, the resulting
programs differ from those of other systems languages. These languages have
a large number of accumulated idioms and software design patterns. What
their analogs in the nesC programming model look like—flexible, reusable, and
efficient components—is an interesting question. The next section provides the
beginnings of an answer.

3. DESIGN PATTERNS

We present eight TinyOS design patterns: three behavioral (relating to compo-
nent interaction): Dispatcher, Decorator, and Adapter, three structural (relating
to how applications are structured): Service Instance, Placeholder, and Facade,
and two namespace (management of identifiers such as message types): Keyset
and Keymap. These patterns are also presented on our website [Levis and Gay
2004], which we will update as new patterns are discovered and documented.
We follow the basic format used in Design Patterns [Gamma et al. 1995], ab-
breviated to fit in a research paper. Each pattern has an Intent, which briefly
describes its purpose. A more in-depth Motivation follows, providing an exam-
ple drawn from TinyOS. Applicable When provides a succinct list of conditions
for use and a component diagram shows the Structure of how components in
the pattern interact.4 This diagram follows the same format as Figure 1, with
the addition of a folded subbox for showing source code (a floating folded box
represents source code in some other, unnamed, component), and is followed by
a Participants lists, explaining the role of each component. Sample Code shows
an example nesC implementation and Known Uses points to some uses of the
pattern in TinyOS. Consequences describes how the pattern achieves its goals
and notes issues to consider when using it. Finally, Related Patterns compares
to other relevant patterns.

4This diagram is omitted for the Keyset pattern, as it is not concerned with component interactions.
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3.1 Behavioral: Dispatcher

3.1.1 Intent. Dynamically select between a set of operations based on an
identifier. Provides a way to easily extend or modify a system by adding or
changing operations.

3.1.2 Motivation. At a high level, sensor network applications execute op-
erations in response to environmental input, such as sensor readings or net-
work packets. The operation’s details are not important to the component that
presents the input. We need to be able to easily extend and modify what inputs
an application cares about, as well as the operation associated with an input.

For example, a node can receive many kinds of active messages (packets).
Active messages (AM) have an 8-bit type field to distinguish between protocols.
A flooding protocol uses one AM type, while an ad-hoc routing protocol uses
another. AMStandard, the component that signals the arrival of a packet, should
not need to know what processing a protocol performs or whether an appli-
cation supports a protocol. AMStandard just delivers packets, and higher level
communication services respond to those they care about.

The traditional approach to this problem is to use function pointers or objects,
which are dynamically registered as callbacks. In many cases, even though reg-
istered at run time, the set of operations is known at compile time. Thus these
callbacks can be replaced by a dispatch table compiled into the executable, with
two benefits. First, this allows better cross-function analysis and optimization
and, second, it conserves RAM, as no pointers or callback structures need to be
stored.

Such a dispatch table could be built for the active message example by
using a switch statement in AMStandard. However, this is very inflexible: any
change to the protocols used in an application requires a change in a system
component.

A better approach in TinyOS is to use the Dispatcher pattern. A Dispatcher
invokes operations using a parameterized interface, based on a data identi-
fier. In the case of AMStandard, the interface is ReceiveMsg and the identifier
is the active message type field. AMStandard is independent of what messages
the application handles, or what processing those handlers perform. Adding
a new handler requires a single wiring to AMStandard. If an application does
not wire a receive handler for a certain type, AMStandard defaults to a null
operation.

Another example of a Dispatcher is the scheduler of the Maté virtual ma-
chine. Each instruction is a separate component that provides the MateBytecode

interface. The scheduler executes a particular bytecode by dispatching to the
instruction component using a parameterized MateBytecode interface. The in-
struction set can be easily changed by altering the wiring of the scheduler.

3.1.3 Applicable When

� A component needs to support an externally customizable set of operations.
� A primitive integer type can identify which operation to perform.
� The operations can all be implemented in terms of a single interface.
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3.1.4 Structure.

3.1.5 Participants

� Dispatcher: invokes its parameterized interface based on an integer type.
� Operation: implements the desired functionality and wires it to the dis-

patcher.

3.1.6 Sample Code.
AMStandard is the radio stack component that dispatches received messages:

module AMStandard {
// Dispatcher interface for messages
uses interface ReceiveMsg as Recv[uint8_t id];

}
implementation {
TOS_MsgPtr received(TOS_MsgPtr packet) {
return signal Recv.receive[packet->type](packet);

}
...

}

and the App configuration registers AppM to handle two kinds of messages:

configuration App {}
implementation {
components AppM, AMStandard;
AppM.ClearIdMsg -> AMStandard.Receive[AM_CLEARIDMSG];
AppM.SetIdMsg -> AMStandard.Receive[AM_SETIDMSG];

}

3.1.7 Known Uses. The Active Messages networking layer (AMStandard,
AMPromiscuous) uses a dispatcher for packet reception. It also provides a pa-
rameterized packet-sending interface; this ensures that packet types for sends
and receives are specified in a uniform manner.

The Maté virtual machine uses a dispatcher to allow easy customization of
instruction sets.

The Drip management protocol (described in Section 3.4) uses a Dispatcher
to allow per-application configuration of management attributes.
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3.1.8 Consequences. By leaving operation selection to nesC wirings, the
dispatcher’s implementation remains independent of what an application sup-
ports. However, finding the full set of supported operations can require looking
at many files (using nesdoc, the nesC documentation tool, can help). Sloppy
operation identifier management can lead to dispatch problems. If two op-
erations are wired with the same identifier, then a dispatch will call both,
which may lead to resource conflicts, data corruption, or memory leaks from
lost pointers. For example, the ReceiveMsg interface uses a buffer swap mech-
anism to pass buffers between the radio stack and network services, in which
the higher component passes a new buffer in the return value of the event.
If two services are wired to a given ReceiveMsg instance, only one of their
pointers will be passed and the second will be lost. Wiring in this fashion is
a compile-time warning in nesC, but it is still a common bug for novice TinyOS
developers.

The current nesC compiler compiles parameterized interface dispatch to a
C switch statement. Thus, the code size and efficiency of a dispatcher will de-
pend on the identifier space and on the C compiler. Good compilers should
compile a compact identifier space to a bounds check, lookup in a table, and
jump (slower than a function pointer, but still efficient). Using a large, sparse
identifier space is likely to produce relatively large and slow dispatch. A benefit
of using a switch statement over, e.g., a function pointer, is that the inlining
performed by the nesC compiler (Section 4.3) may allow optimization across a
dispatch call and between dispatch targets. The inlining also significantly re-
duces the cost of fine-grained dispatching, as seen in the Maté virtual machine
(Section 4.3.3).

The key aspects of the dispatcher pattern are:

� It allows you to easily extend or modify the functionality an application sup-
ports: adding an operation requires a single wiring.

� It allows the elements of functionality to be independently implemented and
reused. Because each operation is implemented in a component, it can be
easily included in many applications. Keeping implementations separate can
also simplify testing, as the components will be smaller, simpler, and easier
to pinpoint faults in. The nesC compiler will automatically inline small op-
erations, or you can explicitly request inlining; thus this decomposition has
no performance cost.

� It requires the individual operations to follow a uniform interface. The dis-
patcher is usually not well suited to operations that have a wide range of
semantics. As all implementations have to meet the same interface, broad
semantics leads to the interface being overly general, pushing error checks
from compile-time to runtime. An implementor forgetting a runtime param-
eter check can cause a hard to diagnose system failure.

The compile-time binding of the operation simplifies program analysis and
puts dispatch tables in the compiled code, saving RAM. Dispatching pro-
vides a simple way to develop programs that execute in reaction to their
environment.
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3.1.9 Related Patterns
� Service Instance: creates many instances of an implementation of an inter-

face, while a dispatcher selects between different implementations of an in-
terface.

� Placeholder: allows an application to select an implementation at compile-
time, while a dispatcher allows it to select an implementation at runtime.

� Keyset: the identifiers used to identify a Dispatcher’s operation typically form
a Global Keyset.

3.2 Structural: Service Instance

3.2.1 Intent. Allows multiple users to have separate instances of a particu-
lar service, where the instances can collaborate efficiently. The basic mechanism
for virtualizing services.

3.2.2 Motivation. Sometimes many components or subsystems need to use
a system abstraction, but each user wants a separate instance of that service.
We do not know how many users there will be until we build a complete appli-
cation. Each instance requires maintaining some state and the service imple-
mentation needs to access all of this state to make decisions.

For example, a wide range of TinyOS components need timers for everything
from network timeouts to sensor sampling. Each timer appears independent,
but they all operate on top of a single hardware clock. An efficient implementa-
tion thus requires knowing the state of all of the timers. If the implementation
can easily determine which timer has to fire next, then it can schedule the
underlying clock resource to fire as few interrupts as possible to meet this low-
est timer’s requirement. Firing fewer interrupts allows the CPU to sleep more,
saving energy and increasing lifetime.

The traditional object-oriented approach to this problem is to instantiate
an object representing the service and use another class to coordinate state.
This approach is not applicable in nesC, as we cannot have multiple copies of
components,5 and either requires sharing state across objects, which is contrary
to encapsulation, or it requires state copying, which uses additional RAM.

Implementing each timer in a separate module leads to duplicated code and
requires intermodule coordination in order to figure out how to set the under-
lying hardware clock. Just setting it at a fixed rate and maintaining a counter
for each Timer is inefficient: timer fidelity requires firing at a high rate, but it
wastes energy to fire at 1 kHz if the next timer is in 4 seconds.

The Service Instance pattern provides a solution to these problems. Using
this pattern, each user of a service can have its own (virtual) instance, but in-
stances share code and can access each other’s state. A component following the
Service Instance pattern provides its service in a parameterized interface; each
user wires to a unique instance of the interface using unique. The underlying
component receives the unique identity of each client in each command and can
use it to index into a state array. The component can determine at compile-time

5This restriction is lifted in nesC 1.2 (Section 4.4).
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how many instances exist using the uniqueCount function and dimension the
state array accordingly.

3.2.3 Applicable When
� A component needs to provide multiple instances of a service, but does not

know how many until compile time.
� Each service instance appears to its user to be independent of the others.
� The service implementation needs to be able to easily access the state of every

instance.

3.2.4 Structure.

3.2.5 Participants
� ServiceProvider: allocates state for each instance of the service and coor-

dinates underlying resources based on all of the instances.
� ResourceImpl: an underlying system resource that ServiceProvider multi-

plexes and demultiplexes service instances on.

3.2.6 Sample Code.
TimerC wires TimerM, which contains the actual timer logic, to an underlying

hardware clock and exports its Timer interfaces:

configuration TimerC {
provides interface Timer[uint8_t id];

}
implementation {
components TimerM, ClockC;

Timer = TimerM.Timer;
TimerM.Clock -> ClockC.Clock;

}

and TimerM uses uniqueCount to determine how many timers to allocate and
accesses them using unique IDs:

module TimerM {
provides interface Timer[uint8_t clientId];
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uses interface Clock;
}
implementation {
// per-client state
timer_t timers[uniqueCount("Timer")];

command result_t Timer.start[uint8_t clientId](...) {
if (timers[clientId].busy)
...

}
}

Clients wanting a timer wire using unique:

C.Timer -> TimerC.Timer[unique("Timer")];

3.2.7 Known Uses. TimerC, as detailed above, uses a service instance pat-
tern to manage various application timers.

The viral code propagation subsystem of the Maté virtual machine uses a
service instance to manage version metadata for code capsules. As the virtual
machine is customizable, the number of needed capsules is not known until the
virtual machine is actually compiled.

In a similar vein, the epidemic dissemination protocol Drip uses the service
instance pattern to maintain epidemic state for each disseminated value.

3.2.8 Consequences. The key aspects of the Service Instance pattern are:

� It allows many components to request independent instances of a common
system service: adding an instance requires a single wiring.

� It controls state allocation, so the amount of RAM used is scaled to exactly the
number of instances needed, conserving memory while preventing runtime
failures because of many requests exhausting resources.

� It allows a single component to coordinate all of the instances, which enables
efficient resource management and coordination.

Because the pattern scales to a variable number of instances, the cost of its
operations may scale linearly with the number of users. For example, if setting
the underlying clock interrupt rate depends on the timer with the shortest
remaining duration, an implementation might determine this by scanning all
of the timers, an O(n) operation.

If many users require an instance of a service, but each of those instances
are rarely used, then allocating state for each one can be wasteful. The other
option is to allocate a smaller amount of state and dynamically allocate it to
users as need be. This can conserve RAM, but requires more RAM per real
instance (client IDs need to be maintained), imposes a CPU overhead (alloca-
tion and deallocation), can fail at runtime (if there are too many simultaneous
users), and assumes a reclamation strategy (misuse of which would lead to
leaks). This long list of challenges makes the Service Instance an attractive—
and more and more commonly used—way to efficiently support application
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requirements. There are situations, however, when a component internally
reuses a single service instance for several purposes: for example, the Maté
code propagation component MVirus uses a single timer instance for several
different timers, which never operate concurrently.

3.2.9 Related Patterns

� Dispatcher: a service instance creates many instances of an implementation
of an interface, while a dispatcher selects between different implementations
of an interface.

� Keyset: a Service Instance’s instance identifiers form a Local Keyset.

3.3 Namespace: Keysets

3.3.1 Intent. Provide namespaces for referring to protocols, structures, or
other entities in a program.

3.3.2 Motivation. A typical sensor network program needs namespaces for
the various entities it manages, such as protocols, data types, or structure in-
stances. Limited resources mean names are usually stored as small integer
keys.

For data types representing internal program structures, each instance must
have a unique name, but as they are only relevant to a single mote, the names
can be chosen freely. These local namespaces are usually dense, for efficiency.
The Service Instance pattern (Section 3.2) uses a local namespace to identify
instances. In contrast, communication requires a shared, global namespace:
two motes/applications must agree on an element’s name. As a mote may only
use a few elements, global namespaces are typically sparse. The Dispatcher
pattern (Section 3.1) uses a global namespace to select operations.

The Keyset patterns provide solutions to these problems. Using these pat-
terns, programs can refer to elements using identifiers optimized for their par-
ticular use. Components using the Keyset patterns often take advantage of a
parameterized interface, in which the parameter is an element in a Keyset.
Local Keysets are designed for referring to local data structures (e.g., arrays)
and are generated with unique; Global Keysets are designed for communication
and use global constants.

The bytecodes of the Maté virtual machine form a Global Keyset. The Maté
scheduler uses these in conjunction with a Dispatcher to execute individual
instructions, each of which is implemented in a separate component. Maté also
uses a Local Keyset to identify locks corresponding to resources used by Maté
programs. These lock identifiers are allocated with unique as the Maté virtual
machine can be compiled with varying sets of resources.

The file descriptors of the Matchbox flash filesystem form a Local Keyset.

3.3.3 Applicable When

� A program must keep track of a set of elements or data types.
� The set is known and fixed at compile-time.
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3.3.4 Sample Code. The Maté bytecodes are defined as global constants:

typedef enum {
OP_HALT = 0x0,
OP_MADD = 0x1,
OP_MBA3 = 0x2,
OP_MBF3 = 0xa,
...

} MateInstruction;

and used by the Maté scheduler to execute individual instructions:

module MateEngineM {
uses interface MateBytecode[uint8_t bytecode];
...

}
implementation {
void computeInstruction(MateContext* context) {
MateOpcode instr = getOpcode(context);
context->pc += call MateBytecode.byteLength[instr]();
call MateBytecode.execute[instr](context);

}
...

}

The Maté lock subsystem identifies locks by small integers:

module MLocks {
provides interface MateLocks as Locks;

}
implementation {
MateLock locks[MATE_LOCK_COUNT];

command void Locks.lock(MateContext* uint8_t lockNum) {
locks[lockNum].holder = context;
context->heldSet[lockNum / 8] |= 1 << (lockNum % 8);

}
...

Locks are allocated in components providing shared resources:

module OPgetsetvar1M { ... } // a shared variable
implementation {
typedef enum {
MATE_LOCK_1_0 = unique("MateLock"),
MATE_LOCK_1_1 = unique("MateLock"),

} LockNames;
...

module OPbpush1M { ... } // a shared buffer
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implementation {
typedef enum {
MATE_BUF_LOCK_1_0 = unique("MateLock"),
MATE_BUF_LOCK_1_1 = unique("MateLock"),

} BufLockNames;
...

and uniqueCount is used to find the total number of locks:

enum {
MATE_LOCK_COUNT = uniqueCount("MateLock")

};

3.3.5 Known Uses. Many components use Local Keysets: they are a funda-
mental part of the Service Instance pattern. See, for example, the timer service,
TimerC, or the Matchbox flash file system.

Maté uses a Local Keyset to keep track of Maté shared resource locks (see
above).

Active Messages (AMStandard) uses a Global Keyset for Active Message types.
The Drip management protocol uses a Global Keyset for referring to config-

urable variables.
The TinyDB sensor-network-as-database application [Madden et al. 2002]

uses a Global Keyset for its attributes; in this case, however, the keyset is
composed of strings, which are then mapped to a Local Keyset using a table.

3.3.6 Consequences. Keysets allow a component to refer to data items or
types through a parameterized interface. In a Local Keyset, unique ensures that
every element has a unique identifier. Global Keysets can also have unique
identifiers, but this requires external namespace management.

As Local Keysets are generated with unique, mapping names to keys (e.g.,
for debugging purposes) is unobvious. The nesC constant generator, ncg, can be
used to extract this information.

Keysets are rarely used in isolation; they support other patterns such as
Dispatcher and Service Instance.

3.3.7 Related Patterns
� Keymap: two Keysets are often related, e.g., one Service Instance may be built

on top of another, requiring a mapping between two Keysets. The Keymap
pattern provides an efficient way of implementing such maps.

� Service Instance: the identifiers used to identify individual services form a
Local Keyset.

� Dispatcher: the identifiers used by a dispatcher are typically taken from a
Global Keyset.

3.4 Namespace: Keymap

3.4.1 Intent. Map keys from one keyset to another. Allows you to translate
global, shared names to local, optimized names, or to efficiently subset another
keyset.
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3.4.2 Motivation. Mapping between namespaces is often useful: it allows
motes to use a global, sparse namespace for easy cross-application communi-
cation and an internal, compact namespace for efficiency.

The Drip management protocol uses the Keyset and Keymap patterns to
allow a user to configure parameters at runtime. A component registers a pa-
rameter with the DripC component with a Global Keyset, so it can be named in
an application-independent manner. The user modifies a parameter by send-
ing a key-value pair using an epidemic protocol, which distributes the change
to every mote. DripC maintains state for each configurable parameter with the
Service Instance pattern, using a Local Keyset. A Keymap maps the global key
to the local key.

Keymaps are also useful for mapping between two local keysets, when
some service, based on the Service Instance pattern, accesses a subset of the
resources provided by another service, also based on the Service Instance
pattern.

For instance, in TinyOS 2.0, there are three storage abstractions with differ-
ent interfaces: blocks, logs, and configuration data. Each of these is identified
by keys from its own local keyset. However, all three are built upon a com-
mon volume abstraction (provided by the StorageManagerC component) used
to partition a mote’s flash chip into independent areas. The volumes used by
an application are identified by a local keyset. Thus it is necessary to map a
block’s identifier to its corresponding volume identifier.

Maps could be implemented using a table and some lookup code. How-
ever, this has several problems. If we want to store this table in ROM,
then it must be initialized in one place. However, this conflicts with the de-
sire to specify keys in separate components (either with unique or with con-
stants). If the table is stored in RAM, then keys can be specified in sepa-
rate components, but RAM is in very short supply on motes. Finally, keys of
Global Keysets are sparse, so the resulting tables would be large and waste
space.

Instead, we can use nesC’s wiring to build Keymaps. By mapping a param-
eterized interface indexed with one key to another parameterized interface
indexed by a second key, we can have the nesC compiler generate the map
at compile-time. In addition, as the map exists as an automatically generated
switch statement, it uses no RAM.

3.4.3 Applicable When

� An application wants to connect services using different identifier spaces.
For instance, the application wants to map global identifiers used for com-
munication (or other purposes) to local identifiers for efficiency. Or, two
services are implemented following the Service Instance pattern, and the
first service needs an instance of the second service for each of its own
instances.

� The identifiers are integer constants.
� The map is known at compile-time.
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3.4.4 Structure.

3.4.5 Participants

� Service1: service accessed via key 1, dependent on Service2.
� Service2: service accessed via key 2.

3.4.6 Sample Code. The DripC component provides a parameterized inter-
face for components to register configurable values with a Global Keyset:

enum { DRIP_GLOBAL = 0x20};
App.Drip -> DripC.Drip[DRIP_GLOBAL];

DripC uses another component to manage its internal state, DripStateM.
DripStateM uses a Local Keyset for the configurable values (an example of the
Service Instance pattern, in Section 3.2), and a Keymap maps between the
two:

enum { DRIP_LOCAL = unique("DripState")};
DripC.DripState[DRIP_GLOBAL] -> DripStateM.DripState[DRIP_LOCAL];

In this example, a user can generate a new value for App’s parameter and
distribute it based on the DRIP GLOBAL key. DripC uses the global key to refer to
the value, but DripStateM can use a local key to refer to the state it maintains for
that value. The wiring compiles down to a simple switch statement that calls
DripStateM with the proper local key.

The BlockStorageC component follows the Service Instance pattern to provide
access to blocks and the StorageManagerC uses the same pattern to provide access
to volumes:

configuration BlockStorageC {
provides interface Block[int blockId];

} ...
configuration StorageManagerC {
provides interface Volume[int volumeId];

} ...

To use a block, you need to allocate unique block and volume identifiers and
wire BlockStorageC to StorageManagerC to form the Keymap:
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enum {
MY_BLOCK = unique("Block"),
MY_VOLUME = unique("Volume")

};

configuration MyBlock {
provides interface Block;

}
implementation {
components BlockStorageC, StorageManagerC;

Block = BlockStorageC.Block[MY_BLOCK];
BlockStorageC.Volume[MY_BLOCK] -> StorageManagerC.Volume[MY_VOLUME];

}

3.4.7 Known Uses. The Drip parameter configuration component, de-
scribed above, uses a Keymap.

The TinyOS 2.0 storage system, also described above, uses a Keymap to map
the different storage abstractions to the common volume abstraction.

3.4.8 Consequences. A Keymap uses nesC wiring to allow components to
transparently map between different keysets. As with Keysets, the Keymap
must be fixed at compile-time.

A Keymap translates into a switch at compile-time. It thus does not use any
RAM; its speed depends on the behavior of the C compiler used to compile nesC’s
output.

Keymaps only support mapping between integers. If you need, e.g., to map
from strings to a Local Keyset, you will need to build your own map.

3.4.9 Related Patterns

� Keyset: A Keymap establishes a map from one keyset to another.

3.5 Structural: Placeholder

3.5.1 Intent. Easily change which implementation of a service an en-
tire application uses. Prevent inadvertent inclusion of multiple, incompatible
implementations.

3.5.2 Motivation. Many TinyOS systems and abstractions have several
implementations. For example, there are many ad-hoc tree routing protocols
(Route, MintRoute, ReliableRoute), but they all expose the same interface, Send.
The standardized interface allows applications to use any of the implementa-
tions without code changes. Simpler abstractions can also have multiple imple-
mentations. For example, the LedsC component actually turns the LEDs on and
off, while the NoLedsC component, which provides the same interface, has null
operations. During testing, LedsC is useful for debugging, but in deployment it
is a significant energy cost and usually replaced with NoLedsC.
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Sometimes, the decision of which implementation to use needs to be uniform
across an application. For example, if a network health-monitoring subsystem
(HealthC) wires to MintRoute, while an application uses ReliableRoute, two rout-
ing trees will be built, wasting resources. As every configuration that wires to a
service names it, changing the choice of implementation in a large application
could require changing many files. Some of these files, such as HealthC, are part
of the system; an application writer should not have to modify them.

One option is for every implementation to use the same component name and
put them in separate directories. Manipulating the nesC search order allows
an application to select which version to use. This approach does not scale well:
each implementation of each component needs a separate directory. Streamlin-
ing this structure by bundling several implementations (e.g., the “safe” versions
and the “optimized” ones) in a single directory requires all-or-nothing inclusion.
This approach also precludes the possibility of including two implementations,
even if they can interoperate.

The Placeholder pattern offers a solution. A placeholder configuration repre-
sents the desired service through a level of naming indirection. All components
that need to use the service wire to the placeholder. The placeholder itself is
just “a pass through” of the service’s interfaces. A second configuration (typically
provided by the application) wires the placeholder to the selected implementa-
tion. This selection can then be changed centrally by editing a single file. As
the level of indirection is solely in terms of names—there is no additional code
generated—it imposes no CPU overhead.

3.5.3 Applicable When

� A component or service has multiple, mutually exclusive implementations.
� Many subsystems and parts of your application need to use this component/

service.
� You need to easily switch between the implementations.

3.5.4 Structure.

3.5.5 Participants

� Placeholder: the component that all other components wire to. It encapsu-
lates the implementation and exports its interfaces with pass-through wiring.
It has the same signature as the implementation component.

� Implementation: the specific version of the component.
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3.5.6 Sample Code. Several parts of an application use ad-hoc collection
routing to collect and aggregate sensor readings. However, the application de-
sign is independent of a particular routing implementation, so that improve-
ments or new algorithms can be easily incorporated. The routing subsystem is
represented by a Placeholder, which provides a unified name for the underlying
implementation and just exports its interfaces:

configuration CollectionRouter {
provides interface StdControl as SC;
uses interface StdControl as ActualSC;
provides interface SendMsg as Send;
uses interface SendMsg as ActualSend;

}
implementation {
SC = ActualSC; // Just "forward" the
Send = ActualSend; // interfaces

}

Component using collection routing wire to CollectionRouter:

SensingM.Send -> CollectionRouter.Send;

and the application must globally select its routing component by wiring the
“Actual” interfaces of the Placeholder to the desired component:

configuration AppMain { }
implementation {
components CollectionRouter, EWMARouter;

CollectionRouter.ActualSC -> EWMARouter.SC;
CollectionRouter.ActualSend -> EWMARouter.Send;
...

}

3.5.7 Known Uses. The Maté virtual machine uses Placeholders for all its
major abstractions (stacks, type checking, locks, etc). The motlle (a Schemelike
language) interpreter implemented in Maté replaces Maté’s default stack han-
dler because it uses a different value representation—the replacement stack
handler converts between the motlle and Maté value representations.

Hardware abstraction is supported in TinyOS by providing different versions
of low-level components for each platform. In this case, implementations are
selected by the platform choice rather than the application.

3.5.8 Consequences. The key aspects of the Placeholder pattern are:

� Establishes a global name that users of a common service can wire to.
� Allows you to specify the implementation of the service on an application-

wide basis.
� Does not require every component to use the Placeholder’s implementation.
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By adding a level of naming indirection, a Placeholder provides a single
point at which you can choose an implementation. Placeholders create a global
namespace for implementation-independent users of common system services.
As using the Placeholder pattern generally requires every component to wire
to the Placeholder instead of a concrete instance, incorporating a Placeholder
into an existing application can require modifying many components. However,
the nesC compiler optimizes away the added level of wiring indirection, so a
Placeholder imposes no runtime overhead. The Placeholder supports flexible
composition and simplifies use of alternative service implementations.

3.5.9 Related Patterns

� Dispatcher: a Placeholder allows an application to select an implementation
at compile-time, while a Dispatcher allows it to select an implementation at
runtime.

� Facade: a Placeholder allows easy selection of the implementation of a group
of interfaces, while a Facade allows easy use of a group of interfaces. An
application may well connect a Placeholder to a Facade.

3.6 Structural: Facade

3.6.1 Intent. Provides a unified access point to a set of interrelated services
and interfaces. Simplifies use, inclusion, and composition of the subservices.

3.6.2 Motivation. Complex system components, such as a filesystem or
networking abstraction, are often implemented across many components.
Higher-level operations may be based on lower-level ones, and a user needs ac-
cess to both. Complex functionality may be spread across several components.
Although implemented separately, these pieces of functionality are part of a
cohesive whole that we want to present as a logical unit.

For example, the Matchbox filing system provides interfaces for reading and
writing files, as well as for metadata operations, such as deleting and renam-
ing. Separate modules implement each of the interfaces, depending on common
underlying services, such as reading blocks.

One option would be to put all of the operations in a single, shared interface.
This raises two problems. First, the nesC wiring rules mean that a component
that wants to use any command in the interface has to handle all of its events.
In the case of a file system, all the operations are split-phase; having to handle a
half dozen events (readDone, writeDone, openDone, etc.) merely to be able to delete
a file is hardly usable. Second, the implementation cannot be easily decomposed
into separate components without introducing internal interfaces, as the top-
level component will need to call out into the subcomponents. Implementing
the entire subsystem as a single huge component is not easy to maintain.

Another option is to export each interface in a separate component (e.g.,
MatchboxRead, MatchboxWrite, MatchboxRename). This increases wiring
complexity, making the abstraction more difficult to use. For a simple open,
read and write sequence, the application would have to wire to three different
components. In addition, each interface would need a separate configuration to
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wire it to the subsystems it depends on, increasing clutter in the component
namespace. The implementer needs to be careful with these configurations, to
prevent inadvertent double-wirings.

The Facade pattern provides a better solution to this problem. The Facade
pattern provides a uniform access point to interfaces provided by many com-
ponents. A Facade is a nesC configuration that defines a coherent abstraction
boundary by exporting the interfaces of several underlying components. In ad-
dition, the Facade can wire the underlying components, simplifying dependency
resolution.

A nesC Facade has strong resemblances to the object-oriented pattern of the
same name [Gamma et al. 1995]. The distinction lies in nesC’s static model.
An object-oriented Facade instantiates its subcomponents at runtime, storing
pointers and resolving operations through another level of call indirection. In
contrast, as a nesC Facade is defined through naming (pass through wiring) at
compile time, there is no runtime cost.

3.6.3 Applicable When

� An abstraction, or series of related abstractions, is implemented across sev-
eral separate components.

� It is preferable to present the abstraction as a whole rather than in parts.

3.6.4 Structure.

3.6.5 Participants

� Facade: the uniform presentation of a set of related services.
� SvcImpl: the separate implementations of each service composing the

Facade.

3.6.6 Sample Code. The Matchbox filing system uses a Facade to present
a uniform filesystem abstraction. File operations are all implemented in differ-
ent components, but the top-level Matchbox configuration provides them in a
single place. Each of these components depends on a wide range of underlying
abstractions, such as a block interface to nonvolatile storage; Matchbox wires
them appropriately, resolving all of the dependencies.
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configuration Matchbox {
provides {
interface FileRead[uint8_t fd];
interface FileWrite[uint8_t fd];
interface FileDir;
interface FileRename;
interface FileDelete;

}
}
implementation {
// File operation implementations
components Read, Write, Dir, Rename, Delete;

FileRead = Read.FileRead;
FileWrite = Write.FileWrite;
FileDir = Dir.FileDir;
FileRename = Rename.FileRename;
FileDelete = Delete.FileDelete;
// Wiring of operations to sub-services omitted

}

3.6.7 Known Uses. Several stable, commonly used abstract boundaries
have emerged in TinyOS [Levis et al. 2004], such as GenericComm (the network
stack, combining radio and serial communication) and Matchbox (a file system),
The presentation of these APIs is almost always a Facade.

3.6.8 Consequences. The key aspects of the Facade pattern are:

� Provides an abstraction boundary as a set of interfaces. A user can easily see
the set of operations the abstraction supports, and only needs to include a
single component to use the whole service.

� Presents the interfaces separately. A user can wire to only the needed parts of
the abstraction, but be certain everything underneath is composed correctly.

A Facade is not always without cost. Because the Facade names all of its
subparts, they will all be included in the application. While the nesC compiler
attempts to remove unreachable code, this analysis is necessarily conservative
and may end up keeping much useless code. In particular, unused interrupt
handlers are never removed, so all the code reachable from them will be included
every time the Facade is used. If you expect applications to only use a very
narrow part of an abstraction, then a Facade can be wasteful.

3.6.9 Related Patterns

� Placeholder: a placeholder allows easy selection of the implementation of a
group of interfaces, while a facade allows easy use of a group of interfaces.
An application may well connect a placeholder to a facade.
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3.7 Behavioral: Decorator

3.7.1 Intent. Enhance or modify a component’s capabilities without modi-
fying its implementation. Be able to apply these changes to any component that
provides the interface.

3.7.2 Motivation. We often need to add extra functionality to an existing
component, or to modify the way it works without changing its interfaces. For
instance, the standard ByteEEPROM component provides a LogData interface to
log data to a region of flash memory. In some circumstances, we would like
to introduce a RAM write buffer on top of the interface. This would reduce
the number of actual writes to the EEPROM, conserving energy (writes to
EEPROM are expensive) and the lifetime of the medium.

Adding a buffer to the ByteEEPROM component forces all logging applications to
allocate the buffer. As some application may not able to spare the RAM, this is
undesirable. Providing two versions, buffered and unbuffered, replicates code,
reducing reuse and increasing the possibility of incomplete bug fixes. It is pos-
sible that several implementers of the interface—any component that provides
LogData—may benefit from the added functionality. Having multiple copies of
the buffering version, spread across several services, further replicates code.

There are two traditional object-oriented approaches to this problem: inheri-
tance, which defines the relationship at compile time through a class hierarchy,
and decorators [Gamma et al. 1995], which define the relationship at runtime
through encapsulation. As nesC is not an object-oriented language, and has
no notion of inheritance, the former option is not possible. Similarly, runtime
encapsulation is not readily supported by nesC’s static component composition
model and imposes overhead in terms of pointers and call forwarding. However,
we can use nesC’s component composition and wiring to provide a compile-time
version of the Decorator.

A Decorator component is typically a module that provides and uses the
same interface type, such as LogData. The provided interface adds functionality
on top of the used interface. For example, the BufferedLog component sits on top
of a LogData provider. It implements its additional functionality by aggregating
several BufferedLog writes into a single LogData write.

Using a Decorator can have further benefits. In addition to augmenting ex-
isting interfaces, they can introduce new ones that provide alternative abstrac-
tions. For example, BufferedLog provides a synchronous (not split-phase) FastLog
interface; a call to FastLog writes directly into the buffer.

Finally, separating added functionality into a Decorator allows it to apply
to any implementation. For example, a packet send queue Decorator can be
interposed on top of any networking abstraction that provides the Send inter-
face; this allows flexible interpositioning of queues and queueing policies in a
networking system.

3.7.3 Applicable When

� You wish to extend the functionality of an existing component without chang-
ing its implementation, or
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� You wish to provide several variants of a component without having to im-
plement each possible combination separately.

3.7.4 Structure.

3.7.5 Participants
� Original: the original service.
� Decorator: the extra functionality added to the service.

3.7.6 Sample Code. The standard LogData interface includes split-phase
erase, append and sync operations. BufferedLog adds buffering to the LogData oper-
ations, and, in addition, supports a FastLogData interface with a nonsplit-phase
append operation (for small writes only):
module BufferedLog {
provides interface LogData as Log;
provides interface FastLogData as FastLog;
uses interface LogData as UnbufferedLog;

}
implementation {
uint8_t buffer1[BUFSIZE], buffer2[BUFSIZE];
uint8_t *buffer;
command result_t FastLog.append(data, n) {
if (bufferFull()) {
call UnbufferedLog.append(buffer, offset);
// ... switch to other buffer ...

}
// ... append to buffer ...

}

The SendQueue Decorator introduces a send queue on top of a split-phase Send

interface:

module SendQueue {
provides interface Send;
uses interface Send as SubSend;

}
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implementation {
TOS_MsgPtr queue[QUEUE_SIZE];
uint8_t head, tail;
command result_t Send.send(TOS_MsgPtr msg) {
if (!queueFull()) enqueue(msg);
if (!subSendBusy()) startSendRequest();

}

3.7.7 Known Uses. BufferedLog improves split-phase logging interface by
buffering small writes.

CRCFilter decorates a ReceiveMsg interface by filtering packets that did not
pass a CRC check: packets that pass are signaled up; those that do not are not.

QueuedSend decorates a SendMsg interface by enqueuing multiple requests,
which it serializes onto an underlying SendMsg, providing in-order transmission.

3.7.8 Consequences. Applying a Decorator allows you to extend or modify
a component’s behavior though a separate component: the original implemen-
tation can remain unchanged. In addition, the Decorator can be applied to any
component that provides the interface.

In most cases, a decorated component should not be used directly, as the
Decorator is already handling its events. The Placeholder pattern (Section 3.5)
can be used to help ensure this.

Additional interfaces are likely to use the underlying component, creating
dependencies between the original and extra interfaces of a Decorator. For in-
stance, in BufferedLog, FastLog uses UnbufferedLog, so concurrent requests to
FastLog and Log are likely to conflict: only one can access the UnbufferedLog at
once.

Decorating an existing component may consume more resources (code space,
power, RAM) than writing a new special-purpose component.

Decorators are a lightweight, but flexible, way to extend component func-
tionality. Interpositioning is a common technique in building networking
stacks [Kohler et al. 2000] and Decorators enable this style of composition.

3.7.9 Related Patterns

� Adapter: An Adapter presents the existing functionality of a component with
a different interface, rather than adding additional functionality and pre-
serving the current interface.

3.8 Behavioral: Adapter

3.8.1 Intent. Convert the interface of a component into another interface,
without modifying the original implementation. Allow two components with
different interfaces to interoperate.

3.8.2 Motivation. Sometimes, a piece of functionality offered by a compo-
nent with one interface needs to be accessed by another component via a dif-
ferent interface. For instance, the TinyDB [Madden et al. 2002] application—
which provides a database-like abstraction over a sensor network—accesses
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the “database attributes” of the sensor network via the AttrRegister interface.
These attributes represent, among other things, the sensors attached to the
sensor network’s motes. However, in TinyOS, sensors are accessed via the ADC

interface.
Modifying each sensor to provide an AttrRegister as well, or instead of, its

current interfaces is not desirable, as AttrRegister provides functionality, which
is not desirable for all applications (named access to sensors) and does not
provide necessary functionality (access to sensors from interrupt handlers).
Instead, TinyDB uses Adapter components, which implement the AttrRegister

interface based on the functionality of the the ADC interface provided by sensors.
An Adapter is a component that provides an interface of type A (for instance,

AttrRegister) and uses an interface of type B (for instance ADC), and implements
the operations of A in terms of those of B. An Adapter may also need to im-
plement functionality not provided by the B interface, e.g., AttrRegister needs
to provide a name for the attribute. More generally, an Adapter may provide
several interfaces A1, . . . , An and implement them in terms of several used in-
terfaces B1, . . . , Bm.

3.8.3 Applicable When

� You wish to provide the functionality of an existing component with a differ-
ent interface.

3.8.4 Structure.

3.8.5 Participants

� Original: the original service.
� Adapter: implements the new interface in terms of the functionality offered

by the old.

3.8.6 Sample Code. The AttrPhotoM component adapts the standard Photo

(light) sensor for use with TinyDB. It gives the attribute a name, implements
getting the attribute using the underlying ADC interface, and refuses requests
to set the attribute:

module AttrPhotoM {
provides interface StdControl;
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provides interface AttrRegister;
uses interface ADC;

}
implementation {
void *buffer;
command void StdControl.init() { // register the attribute’s name
and size signal AttrRegister.registerAttr("light", 2);

}
command result_t AttrRegister.getAttr(void *result) {
buffer = result;
return call ADC.getData();

}
event void ADC.dataReady(uint16_t data) {
*(uint16_t*)buffer = data;
signal AttrRegister.getAttrDone(result);

}
command result_t AttrRegister.setAttr(void *attrVal) {
return FAIL; // cannot "set" a sensor

}
}

3.8.7 Known Uses. Many TinyDB attributes are implemented using
Adapters.

In TinyOS 2.0, hardware resources, such as A/D converters, are presented
by a hardware abstraction layer (HAL), which offers high-level, but hardware-
specific interfaces and a hardware-independent layer (HIL), which offers high-
level, platform-independent interfaces. The HIL layer is typically an Adapter
over the HAL layer. For example, see the AdcP A/D converter component for the
ATmega128.

TinyOS 2.0 has two timing interfaces: Alarm signals timer events from an
interrupt handler (immediately); Timer signals its events in a task (with some
delay). The AlarmToTimerC component is an Adapter that converts between these
interfaces.

3.8.8 Consequences. An Adapter allows a component to be reused in cir-
cumstances other than initially planned for without changing the original
implementation.

In many cases, a component used with an Adapter cannot be used indepen-
dently in the same application, as the Adapter will already be handling its
events. As with the Decorator, the Placeholder pattern (Section 3.5) can help
ensure this.

An Adapter can be used to adapt many different implementations of its used
interfaces if it does not embody assumptions or behavior specific to a particular
adapted component. However, the singleton nature of nesC components means
that a particular adapter can only be used once in a given application.

Adding an additional layer to convert between interfaces may increase the
application’s resource consumption (ROM, RAM, and execution time).
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3.8.9 Related Patterns
� Decorator: A Decorator adds functionality to an existing component while

preserving its original interface. An Adapter presents existing (and possibly
additional) functionality via a different interface.

4. DISCUSSION

We compare our design patterns to standard object-oriented patterns and show
how they support TinyOS’s design goals. We show that our patterns depend
fundamentally on features of both the nesC language and compiler. In partic-
ular, nesC’s optimizations have a major impact on the size and efficiency of
pattern-based programs, reducing power use by up to 45% and code size by up
to 67%. Finally, we discuss how these patterns have influenced the design of the
nesC programming language and how recent changes to nesC address some of
the limitations of our current patterns.

4.1 Comparison to Object-Oriented Patterns

The eight design patterns described in Section 3 can be separated into classes:
Dispatcher, Service Instance, Keyset, and Keymap are specific to nesC, while
Adapter, Decorator, Facade, and Placeholder have analogs in existing pat-
terns [Gamma et al. 1995]. The differences from traditional object-oriented
patterns stem from the design principles behind TinyOS [Levis et al. 2005b].
For example, TinyOS generally depends on static composition techniques to
provide robust, unattended operation: function pointers or virtual functions
can complicate program analysis, while dynamic allocation can fail at runtime
if one allocator misbehaves. As a result, where many object-oriented patterns
increase object flexibility and reusability by allowing behavior changes at run-
time, our patterns require that most such decisions be taken by compile-time.

The nesC-specific patterns represent ways to make nesC’s static program-
ming model more practical. Service Instance allow services (e.g., timers, file
systems) to have a variable number of clients; it is the standard pattern for a
stateful TinyOS service. Dispatcher supports application-configured dispatch-
ing (e.g., message reception, user commands). The Keyset pattern both supports
these two patterns and allows data structures to be sized according to a partic-
ular application’s needs. Keymaps are a practical way of building components
above Service Instances and of associating state with sparse identifier sets.

The TinyOS Adapter, Facade, and Decorator patterns have similar goals and
structures to their identically named object-oriented analogs [Gamma et al.
1995, pp.139, 175, 185, respectively]. The Facade assembles a set of existing
components and presents them as a single component to simplify use; the
Decorator adds extra functionality to an existing component and the Adapter
makes existing functionality available via a different interface. The differences
lie in nesC’s model of static composition. In the case of the Facade, this means
that all of the relationships are bound at compile-time; in addition, nesC pro-
vides no way of making the internals of a Facade truly private (the internal
components can always be referred to from elsewhere by name). Adapters and
Decorators are more important than in an object-oriented context, as they
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provide a way of defining implementation–inheritance hierarchies in a
component-based language. However, the use of any given Adapter or Deco-
rator is limited by the singleton nature of components. Finally, Placeholder has
similarities to the Bridge [Gamma et al. 1995, p. 151]: it simplifies implemen-
tation switching, but requires that the implementation selection be performed
at compile-time.

4.2 Patterns Support TinyOS’s Goals

The patterns we have presented, directly support TinyOS’s design goals of ro-
bustness, low resource usage, supporting hardware evolution, enabling diverse
service implementations, and adaptability to application requirements. Specif-
ically,
� A Placeholder supports diverse implementations by simplifying implemen-

tation selection and hardware evolution by defining a platform-independent
abstraction layer.

� Decorator and Adapter support diverse implementations and hardware evo-
lution by enabling lightweight component extension.

� Service Instance and Dispatcher increase robustness and lower resource us-
age by resolving component interactions at compile-time.

� Dispatcher and Global Keyset improve application adaptability by providing
a way to easily configure what operations an application supports and how
it reacts to its environment.

� A Local Keyset increases robustness and lowers resource usage by sizing
services to an application’s needs.

� A Keymap lowers resource usage by building maps as code rather than in
RAM; in addition, it allows Decorators and Adapters to be built for Service
Instances.

4.3 Language and Compiler Support for Patterns

To be of practical use, these design patterns must be not only useful for embed-
ded systems programming, but must also be expressible in a sufficiently concise
fashion and should not impose significant code space or runtime overhead. We
briefly describe the nesC compiler and its inlining and unreachable-code opti-
mizations, and then evaluate how its features combined with the nesC language
design supports design patterns.

4.3.1 nesC compiler. The nesC compiler generates a single C file contain-
ing the executable code of all the modules of the program, and “connection”
functions representing the wiring specified by the configurations. Connection
functions:
� Exist for each used command and provided event of each module.
� Contain calls to the target(s) of the command or event (as specified by the

configurations).
� Combine the results of multiple calls, as specified by the programmer.
� Use a switch to implement the dispatch specified by parameterized interfaces.
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For instance, the connection function for the Init.init command of the Main

component from Figure 1, Section 2 is:

void Main__Init__init() {
AppM__Init__init();
TempM__Init__init();
LightM__Init__init();

}

The nesC compiler then performs two optimizations. First, it removes un-
reachable functions and variables, based on its knowledge of the program’s call
graph and the program’s entry points (boot and interrupt handlers, specified
in TinyOS’s source code). Second, it aggressively inlines functions across the
entire program, as described in the next section. Note that the program’s call
graph, used by both optimizations, is easily derived from the explicit function
calls and the program’s wiring. Edges resulting from function pointers (whose
use is discouraged in nesC) are not present. The absence of these edges does
not affect inlining and is handled in unreachablecode elimination by counting
any reference to a function as a call.

Finally, the resulting C code is passed to a target-specific C compiler.

4.3.2 Inlining in nesC . Inlining in nesC has three goals: remove the over-
head of wiring, remove the overhead of small, separate components, and reduce
code size. These goals are achieved through a conservative, whole-program
inliner, which takes as input the program’s call graph annotated with each
function’s approximate size. The size is heuristically defined as the number of
computational nodes in the function’s abstract syntax tree.

Inlining proceeds as follows, until no other functions can be inlined:
� If a function has a single call site, inline it.
� If a function’s size is below some threshold (see below), inline it.
� When inlining a function, update the call graph edges appropriately and add

the inlined function’s size minus one to all callers.

Inlining a function with a single call site normally reduces code size and
increases performance. To avoid increasing code size when inlining functions
with multiple call sites, we pick a small size threshold for inlining: inlining a
small function is likely to reduce (or only slightly increase) code size through
elimination of function call overhead and increased optimization opportuni-
ties. We chose a threshold of 9 + 2n, where n is the number of the function’s
arguments. Functions with more arguments present more optimization oppor-
tunities, and, hence, should be inlined more aggressively. The specific constants
were selected based on an evaluation of ten TinyOS programs on two platforms
(mica2 and telosb). The parameters chosen are the largest (ordered by base size,
then per-argument size) that keep code expansion below 5% on all programs.

Actual inlining is left to the C compiler, which processes the generated C file;
nesC simply outputs appropriate inline directives.6

6All our current platforms use gcc. We ensure that it inlines all requested functions by passing it
an -finline-limit=100,000 option.
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4.3.3 Evaluation. Concise and efficient expression of our patterns is made
possible by the following features:
� The inlining optimization leads to the inlining of most “connection” func-

tions (because they are generally small and/or called only once), significantly
reducing the cost of wiring. This makes it possible to break programs into
many components without a large performance cost (Dispatcher, Placeholder,
Facade, Decorator, Adapter). In addition, inlining will often inline code across
component boundaries, further reducing the cost of using many components.
For instance, the instructions of a virtual machine split across many compo-
nents (following the Dispatcher pattern) are compiled into a single function
as all instructions have a single call.

� Unreachable code elimination removes unused functionality (typically un-
called commands in OS services), allowing more general components to be
designed (Facade).

� Parameterized interfaces allow runtime dispatches (Dispatcher, Service In-
stance, Keyset, Keymap).

� Unique identifiers support compile-time configuration of services, e.g., to
identify clients (Service Instance, Keyset).

To show the importance of nesC’s optimizations in supporting the use of our
patterns in real programs, we evaluated the code size and average power draw
of five programs:
� Timer: runs three timers, at 25, 50, and 100 ms. There are two versions of

this program, for TinyOS 1.1 and 2.0, respectively.
� DataCollection: sample a sensor twice a second, and send a radio message

with the results every 10 s. There are two versions of this program, for TinyOS
1.1 and 2.0, respectively.

� VM: a bytecoded interpreter for a Schemelike language, built with the Maté
virtual machine architecture [Levis et al. 2005a], running on TinyOS 1.1.
The interpreter runs a simple program that performs a little computation
ten times a second and sends a radio message with the results every 50 s.

TinyOS 2.0 and the Maté virtual machine make heavy use of all our patterns,
while TinyOS 1.1 is much more monolithic. We compiled these five applications
for mica2 motes, which have an Atmel ATmega128 microcontroller, running at
8 MHz, with 128 kB of flash and 4 kB of RAM. We measured power draw using
an oscilloscope that measured current draw at 100 Hz for 100 s. The output of
the nesC compiler was compiled with gcc 3.3.2 (for the TinyOS 1.1 programs)
and gcc 3.4.3 (for the TinyOS 2.0 programs)—gcc 3.3.2 gives better performance
for TinyOS programs but a bug prevents its use with TinyOS 2.0. Programs are
optimized for size (gcc’s -Os option).

Table I shows the code size and power draw of these programs with and with-
out the inlining and unreachable-code optimisations.7 The first observation is
that unreachable-code elimination and inlining are important in reducing the

7Unreachable-code elimination has no effect on power draw on the mica2 platform.
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Table I. Effect of Optimizations on Code Size and Power Draw in Several TinyOS Programs

Inlining Unreachable-Code Improvements
+ Unreachable-Code Only Unoptimized (Code/Power)(%)

Timer 1.1 2.0 KB / 0.36 mW 2.7 KB / 0.39 mW 4.1 KB 51 / 8
Timer 2.0 2.6 KB / 0.43 mW 3.8 KB / 0.52 mW 8.0 KB 67 / 17
DataCollection 1.1 12.1 KB / 1.58 mW 14.8 KB / 1.64 mW 17.4 KB 30 / 4
DataCollection 2.0 11.3 KB / 1.90 mW 15.6 KB / 2.12 mW 20.8 KB 46 / 10
VM 1.1 43.5 KB / 4.95 mW 59.5 KB / 8.98 mW 81.8 KB 47 / 45

code size of all nesC programs, giving at least a 33% reduction. However, the
effect is larger on programs using patterns (Timer 2.0, DataCollection 2.0, and
VM 1.1), with a 46% or more reduction. Second, when comparing similar appli-
cations (Timer 1.1 versus 2.0 and DataCollection 1.1 versus 2.0), we see that
the power decrease in the pattern-intensive programs is much larger: 17 versus
8% for Timer, and 10 versus 4% for DataCollection. Note that the differences
in power consumption between the Timer and DataCollection applications in
TinyOS 1.1 and 2.0 reflect, in part at least, differences in functionality: for in-
stance, the TinyOS 2.0 timer maintains the current time, which requires it to
handle more interrupts to deal with the overflow of the 8-bit hardware timer.
Finally, the virtual machine shows that these optimizations are particularly
important in large, pattern-intensive programs: VM’s code size is reduced by
47% and its power by 45%.

4.4 nesC, Yesterday and Tomorrow

As experience in using TinyOS has grown, we have introduced features in nesC
to make building applications easier. Design patterns have been the motivation
for several of these features. For example, the first version of nesC (before
TinyOS 1.0) had neither unique nor uniqueCount. Initial versions of the Timer
component coalesced into Service Instance pattern, which led to the inclusion
of unique and uniqueCount. The recently released 1.2 version of nesC introduces
the feature of generic components to simplify using design patterns.

TinyOS design patterns are limited by the singleton nature of nesC compo-
nents, leading to a significant amount of code duplication. For example, when
wiring to a Service Instance, a programmer must carefully use the same incan-
tation with a particular key for unique. If a program needs two copies of, e.g.,
a data filter Decorator, then two separate components must exist, and their
code must be maintained separately. These examples involve replicated code:
changing the Service Instance key requires changing every user of the service,
and a typo in one instance of the key can lead to buggy behavior (the keys may
no longer be unique).

Version 1.2 of nesC addresses this issue with generic components, which can
be instantiated at compile time with numerical and type parameters. Essen-
tially, component instantiation creates a copy of the code with arguments sub-
stituted for the parameters. Configurations (including generic configurations)
can instantiate generic components:

components new LogBufferer() as LB, ByteEEPROM;
LB.UnbufferedLog -> ByteEEPROM;
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Generic configurations allow a programmer to capture wiring patterns and
represent them once. For example, the key a Service Instance component uses
can be written in one place: instead of wiring with unique, a user of the service
wires to an instance of a generic configuration:

generic configuration TimerSvc() {
provides interface Timer;

}
implementation {
components TimerC;
Timer = TimerC.Timer[unique("TimerKey")];

}
....

components User1, new TimerSvc() as MyTimer;
User1.Timer -> MyTimer.Timer;

They also make the Keymap pattern much more convenient. The actual code
for the BlockStorageC example from Section 3.4 is:

generic configuration BlockStorageC() {
provides interface Block;

}
implementation {
components BlockStorageM, StorageManagerC;

enum {
BLOCK_ID = unique("Block"),
VOLUME_ID = unique("Volume")

};
Block = BlockStorageM.Block[BLOCK_ID];
BlockStorageM.Volume[BLOCK_ID] -> StorageManagerC.Volume[VOLUME_ID];

}

When the programmer creates a BlockStorageC component, all the Keymap
wiring is done automatically.

Generic modules make Decorators and Adapters much more reusable
through multiple instantiation and component arguments. Generic components
allow patterns such as Facade to have private components, whose interfaces are
only accessible through what a configuration exposes. Finally, by providing a
globally accessible name, a Placeholder provides a way to make a generic com-
ponent behave like a nesC 1.1 singleton.

5. CONCLUSION

Like their object-oriented brethren, TinyOS design patterns are templates of
how functional elements of a software system interact. Flexibility is a com-
mon goal, but in TinyOS we must also preserve the efficiency and reliability
of nesC’s static programming model. Thus, the TinyOS patterns allow most of
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this flexibility to be resolved at compile-time, through the use of wiring, unique
and uniqueCount.

Our set of TinyOS design patterns is a work in progress. In particular, it is
clear that analogs of many of the structural patterns from the original Design
Patterns book [Gamma et al. 1995] can be expressed in nesC, with a “component
= class,” or “component = object” mapping. Translations of behavioral patterns
is harder, reflecting the differences in resources and application domains. The
fact that our list contains relatively few behavioral patterns (just Dispatcher,
Decorator, and Adapter) may reflect the fact that, so far, TinyOS applications
have been fairly simple.

Finally, our design patterns are reusable patterns of component composition.
TinyOS has many other forms of patterns, such as interface patterns (e.g.,
split-phase operations, error handling),8, and data-handling patterns (e.g., data
pumps in the network stack). These other sorts of patterns deserve further
investigation.

ACKNOWLEDGMENTS

This work was supported, in part, by the Defense Department Advanced
Research Projects Agency (grants F33615-01-C-1895 and N6601-99-2-8913),
the National Science Foundation (grants No. 0122599 and NSF IIS-033017),
California MICRO program, and Intel Corporation. Research infrastructure
was provided by the National Science Foundation (grant EIA-9802069).

REFERENCES

DOUGLASS, B. P. 2002. Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
Systems. Addison-Wesley, Reading, MA.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA.

GAY, D., LEVIS, P., VON BEHREN, R., WELSH, M., BREWER, E., AND CULLER, D. 2003. The nesC lan-
guage: A holistic approach to networked embedded systems. In Proeedings of the ACM SIG-
PLAN 2003 Conference on Programming Language Design and Implementation. San Diego, CA.
1–11.

GIROD, L., ELSON, J., CERPA, A., STATHOPOULOS, T., RAMANATHAN, N., AND ESTRIN, D. 2004. EmStar: A
software environment for developing and deploying wireless sensor networks. In Proceedings of
the 2004 USENIX Annual Technical Conference. Boston, MA. 283–296.

GREENSTEIN, B., KOHLER, E., AND ESTRIN, D. 2004. A sensor network application construction kit
(SNACK). In Proceedings of the 2nd International Conference on Embedded Sensor Systems.
Baltimore, MD. 69–80.

HILL, J., SZEWCZYK, R., WOO, A., HOLLAR, S., CULLER, D. E., AND PISTER, K. S. J. 2000. System
architecture directions for networked sensors. In Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and Operating Systems. Cambridge, MA.
93–104.

KLEIMAN, S. 1986. Vnodes: An architecture for multiple file system types in Sun UNIX. In Pro-
ceedings of the 1986 USENIX Conference. Atlanta, GA. 238–247.

KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND KAASHOEK, M. F. 2000. The Click modular
router. ACM Transactions on Computer Systems 18, 3, 263–297.

LEVIS, P. AND GAY, D. 2004. TinyOS Design Patterns. http://sing.stanford.edu/tinyos/patterns.
LEVIS, P., MADDEN, S., GAY, D., POLASTRE, J., SZEWCZYK, R., WOO, A., BREWER, E., AND CULLER, D. 2004.

8The device patterns in EM� [Girod et al. 2004] may provide inspiration here.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 22, Publication date: September 2007.



Software Design Patterns for TinyOS • Article 22 / 39

The emergence of networking abstractions and techniques in TinyOS. In Proceedings of the 1st
Symposium on Network Systems Design and Implementation. San Francisco, CA. 1–14.

LEVIS, P., GAY, D., AND CULLER, D. 2005a. Active sensor networks. In Proceedings of the 2nd Sym-
posium on Network Systems Design and Implementation. Boston, MA. 343–356.

LEVIS, P., MADDEN, S., POLASTRE, J., SZEWCZYK, R., WHITEHOUSE, K., WOO, A., GAY, D., HILL, J., WELSH, M.,
BREWER, E., AND CULLER, D. 2005b. TinyOS: An operating system for wireless sensor networks.
In Ambient Intelligence. Springer-Verlag, New York.

MADDEN, S. R., FRANKLIN, M. J., HELLERSTEIN, J. M., AND HONG, W. 2002. TAG: A tiny aggregation
service for ad-hoc sensor networks. In Proceedings of the 5th Symposium on Operating System
Design and Implementation. Boston, MA. 131–146.

PATTERNSW1 2001. OOPSLA Workshop Towards Patterns and Pattern Languages for OO Dis-
tributed Real-time and Embedded Systems.

PATTERNSW2 2002. OOPSLA Workshop on Patterns in Distributed Real-time and Embedded
Systems.

PATTERNSW3 2002. PLOP Workshop on Patterns and Pattern Languages in Distributed Real-time
and Embedded Systems.

Received October 2005; revised April 2006; accepted June 2006

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 22, Publication date: September 2007.


