
Multi-Language Synchronization

Robert Ennals David Gay

Intel Research Berkeley,
2150 Shattuck Avenue, Berkeley,

CA 94704, USA
robert.ennals@intel.com

david.e.gay@intel.com

Abstract. We propose multi-language synchronization, a novel approach
to the problem of migrating code from a legacy language (such as C) to
a new language. We maintain two parallel versions of every source file,
one in the legacy language, and one in the new language. Both of these
files are fully editable, and the two files are kept automatically in sync
so that they have the same semantic meaning and, where possible, have
the same comments and layout.
We propose non-deterministic language translation as a means to imple-
ment multi-language synchronization. If a file is modified in language A,
we produce a new version in language B by translating the file into a
non-deterministic description of many ways that it could be encoded in
language B and then choosing the version that is closest to the old file
in language B.
To demonstrate the feasibility of this approach, we have implemented a
translator that can synchronize files written in a straw-man language,
Jekyll, with files written in C. Jekyll is a high level functional program-
ming language that has many of the features found in modern program-
ming languages.

1 Introduction

The programming language community has produced many programming lan-
guages that improve on legacy languages such as C in useful ways. They have
produced languages that are easier to use, easier to understand, safer, more
portable, more reusable, etc. But, despite all these advantages, a large propor-
tion of important software projects continue to use legacy languages.

Why is this? Prior work suggests that one of the principle reasons why pro-
grammers continue to use legacy languages is that they have built up such a
strong ecosystem around them that the switching costs associated with moving
to a new language are prohibitive [28,17]. In particular:

– Much software is already written in legacy languages
– Many libraries are written in legacy languages
– Many programmers only understand legacy languages
– Many tools only understand legacy languages

C File v1 Jkl File v1

Jkl File v2

 Jekyll Edits

C File v2

Initial

Synchronize

Jkl File v3

C Edits

C File v3 Synchronize

Fig. 1. JT keeps the Jekyll and C versions of a file synchronized

– Developers are wary of trusting a language that might not be maintained in
10 years time

– For existing projects, developers are unwilling to port large code bases to
new languages, both because of the effort involved and the risk of introducing
new bugs

Historically, new languages that have achieved success have overcome these
issues using a combination of three techniques:

– Attack a niche in which no other language has built up a strong ecosystem
(e.g., Perl [29] for text processing or SQL [5] for database queries).

– Build up a new ecosystem from scratch (e.g., Java [15] and C# [4], using the
muscle of large global companies, or Ada [25] under government mandate).

– Exploit the ecosystem of an existing language by having some degree of
compatibility with that language (e.g., C++ [27] and Objective C [23], which
are supersets of C).

In this paper, we propose a novel way for a new language to exploit the
ecosystem of legacy languages such as C. Our approach is to maintain two par-
allel versions of each source file, one in the legacy language and one in the
new language. Both of these files are human readable, un-annotated, and fully
editable. A synchronizer program propagates updates between the two files, en-
suring that they remain semantically equivalent, and, as much as possible, have
the same comments and layout (Figure 1). We call this technique multi-language
synchronization.

The hope is that, by providing an editable version of a file in the legacy
language, it becomes easier for a project to adopt a new language, since greater
use can be made of the ecosystem of the legacy language. In particular:

– Programmers who do not know the new language can edit the legacy file
– Legacy language tools can be applied to the legacy version of the file
– Tools that generate code in the legacy language can be used with projects

in the new language
– If the new language ceases to be developed, one can continue development

using the legacy version of the file
– Legacy programs can begin to transition to a new language, without having

to commit to abandoning the legacy language

– When legacy programmers and new-language programmers work on the same
program, edits made by one group can be seen as minimal edits by the other
group — preserving language-specific structure and layout

While the task of translating between two languages without losing language-
specific information might seem daunting, we show that it can be done using
non-deterministic language translation. To translate a file from language A to
language B, we produce a description of many encodings of the file in language B,
and then select the version that is closest to the old file in language B (Figure 2).

To demonstrate the feasibility of multi-language synchronization, we have
implemented a translator, JT, which can synchronize files written in C with
files written in a new language, called Jekyll. The design of Jekyll is not a
goal in itself; rather it is intended to show that multi-language translation is
possible between two fairly different languages: Jekyll is a modern functional
programming language which has many of the features present in languages
such as Haskell [24], ML [21], and Cyclone [16], including generic types, lambda
expressions, pattern matching, algebraic datatypes, and type classes. Jekyll also
has all of the features of C, although potentially unsafe features such as pointer
arithmetic require use of a explicit unsafe keyword in order to avoid a warning
(in common with C# [4]). A more complete description of Jekyll can be found
in a companion tech report [8]; JT is available on SourceForge at: http://
sourceforge.net/projects/jekyllc.

The main contributions of this paper are the concept of multi-language syn-
chronization, presented in more detail in Section 2, and the algorithms and
techniques that make multi-language synchronization possible (Section 3). In
Section 4 we present a preliminary evaluation of multi-language synchronization
based on our experiences with JT. This evaluation shows that multi-language
synchronization does work in practice, at least on a small scale. In the future,
we hope to conduct a full evaluation based on a realistic successor to C used on
a large-scale software project, as part of the Ivy project [1]. We discuss related
work in Section 5 and conclude in Section 6.

2 Multi-Language Synchronization

We start by outlining the basic model for, and usability requirements on, multi-
language synchronization (Section 2.1), followed by a discussion of the require-
ments on the languages being translated (Section 2.2), For concreteness, in this
section and the rest of the paper, we discuss multi-language synchronization in
terms of C, Jekyll and JT. However, except when referring to language-specific
features, our comments apply to multi-language synchronization in general.

2.1 Model and Usability Requirements

Our basic model for multi-language synchronization, shown earlier in Figure 1, is
that at all times each source file S exists in C (SC) and Jekyll forms (SJ). After

http://sourceforge.net/projects/jekyllc
http://sourceforge.net/projects/jekyllc

a programmer edits the C file XC, the system regenerates (“synchronizes”) the
corresponding Jekyll file XJ, based on the new contents of the C file and the
old contents of the Jekyll file; edits to Jekyll files are handled in an analogous
fashion. This regeneration is expected to happen frequently (e.g., after every
successful build or before every commit to a source-code control system).

It is of course also possible to translate a C file to Jekyll without any previous
Jekyll version (e.g., when importing an existing project). However, the presence
of a previous version allows for a better translation preserving the use of Jekyll-
specific features not explicitly present in the C version of the source code, as
discussed in Section 3 and shown in the examples of Section 4.

Multi-language synchronization is an inexact science. A C file generated from
a Jekyll file is typically not as readable as a C file written by a C programmer,
and there are limits on the degree to which a C programmer can edit C code
that represents a higher-level Jekyll feature before JT is unable to produce a
good corresponding update to the Jekyll file.

The goal however is not to be perfect, but to be good enough to be useful. In
particular, the translation should be good enough that a C programmer unfamil-
iar with Jekyll would find it easier to edit the C file than to edit the Jekyll file,
and a developer would find it easier to use an existing C tool on the C file than
to work without that tool using the Jekyll file. More generally, the translation
has the following goals:

– Semantics are preserved: C code translated into Jekyll has unchanged
behaviour, and vice-versa.

– Edits are translated naturally: The result of making a change to a C
file and then translating it to Jekyll is close to the results of translating
the original C file to Jekyll and logically performing the same change, and
vice-versa.

– C programmers can understand C code produced by JT: Gener-
ated C code is readable, fully commented, and does not contain additional
annotations.

– JT can understand code produced by C programmers: JT is suf-
ficiently tolerant of edits to C code encoding Jekyll features that it can
produce reasonable Jekyll updates for a large proportion of C updates.

– No special infrastructure needed: JT works from the text files contain-
ing the C and Jekyll source code. It does not require, for example, that all
code modifications be performed by a special editor. We do however use, as
outlined above, the previous version of the target of the translation.

Note that some of these goals may be in conflict: for instance, as we discuss in
more detail in Section 3.3, the desire to produce a translation from C which pre-
serves the use of some Jekyll feature — in support of the natural edit translation
goal — may lead JT to change the semantics during translation. Such behaviour
is acceptable in a translator as long as it always warns the programmer in an
appropriate way, and only does it in well-justified cases (e.g., JT believes the
code it was translating was buggy).

2.2 Language Requirements

We do not believe that multi-language synchronization between arbitrary pairs
of languages is practical. We do believe the following properties of Jekyll and C
(especially the first two) are what makes JT practical, and suggest that these
should serve as guidelines in the design of other multi-language translation sys-
tems:

– All C features can be translated reasonably easily into Jekyll. In
particular, Jekyll supports all unsafe features of C (although their use is
discouraged, and warnings are produced unless the unsafe keyword is used).

– All Jekyll features can be translated into reasonably readable C. In
particular, Jekyll does not support lazy evaluation or tail recursion elimina-
tion, and several features (e.g., the implementation of closures) are designed
with a C encoding in mind.

– Jekyll uses the same data-layout as C. This is particularly important
in a language such as C where low-level features allow data layout to be
exposed.

3 Non-Deterministic Language Translation

One approach to maintaining two consistent versions of the same file in different
languages would be to apply the actions performed on one file (e.g., rename this
function, insert this code) to the other, in a fashion similar to database view
updates [14,6]. However, this approach is not practical as editors do not record
such information, and programmers do not edit files purely in terms of structural
operations.

Instead, our approach to implementing multi-language synchronization is
non-deterministic language translation. A modified C file can be encoded into
Jekyll in many different ways. Rather than picking one of these encodings, JT
translates a C file into a non-deterministic description of many of the ways that
the file might be encoded as Jekyll. JT then resolves this non-determinism by
attempting to choose the Jekyll file that is the closest textual match to the previ-
ous Jekyll version of the file (Figure 2). Similarly, there are many different ways
that a Jekyll file might be translated to C. JT attempts to choose the decoding
that most closely resembles the previous C file.

This non-deterministic approach allows JT to translate Jekyll code into com-
pletely unannotated C. It is not necessary to add information to C files since JT
attempts to deduce this information from the previous Jekyll version of the file
(Section 3) and preserve that encoding.

Similarly, the non-deterministic approach also allows JT to be reasonably
tolerant of edits to C code while still ensuring that translation is lossless. JT
allows a Jekyll feature to be encoded into C in many different ways, increasing
the chances that when a C programmer edits such C code JT will still recognize
it as the encoding of a Jekyll feature.

C File

Previous
Jekyll File Jekyll File

Non-Determisistic
Jekyll FileDecode

Select Closest

C
File

Previous
Jekyll File Jekyll File

Non-Det
Tokens

Parse

Select Closest

C
AST

Non-Det
Jekyll AST

Transform Print

Simple

Detailed

Fig. 2. The structure of the JT translation system

Perhaps most crucially, the non-deterministic approach allows the implemen-
tation to be simple and elegant. The translator need merely describe the various
ways in which C and Jekyll can be encoded into each other, and the details of
how to choose the correct encoding are left to a generic matching algorithm.
There is no need for special-purpose code to recognize particular kinds of up-
dates or preserve particular kinds of information, and new encodings and new
language features can be added very easily.

Figure 2 illustrates the structure of the translation system used by JT. In
the following sections, we will discuss this translation process in more detail.

3.1 Non-Deterministic Abstract Syntax Trees (ASTs)

When an AST is translated from one language into another, some of the nodes in
the target syntax tree may be special “?” nodes that represent a non-deterministic
choice of encoding/decoding. The “?” node takes three arguments, which have
the following meanings:

– The decision variable, v, is a logical decision variable that can be either
true or false.

– The choices, at and af are the different nodes that the non-deterministic
node can resolve to. If v is true then the node resolves to at, otherwise it
resolves to af . Although only two choices are specified, one can encode an
arbitrarily long list of choices by using several nested “?” constructors.
These choices will often have substantial similarities. To avoid exponential
blow-up in the size of our AST, we allow different choices to share sub-nodes.

Decision variables allow one to specify dependencies between the choices
made in different parts of the tree. This is useful since a single encoding/decoding
decision may have effects in a number of places throughout the file. For example
a C function that is never called directly and has its address taken once could be
decoded either as a Jekyll function or as a lambda expression. Since a decision
needs to be made, a decision variable is allocated. This variable will be true if
the function is a lambda expression and false if the C function is just a Jekyll

function. This decision variable is then used to parameterize each point in the
AST at which this decision would cause the Jekyll program to be different,
including the function definition and the function use.

The af choice is the default choice, and is the choice that the select closest
stage (Figure 2) will pick if neither of the two options is a close match to the
previous file. The default choice is always the most conservative choice. For
example, when decoding C as Jekyll, the default is to produce Jekyll code that
is identical to the original C code. Amongst other things, the default case will
typically be used when new code is added to a file, or no current version exists
in the other language.

3.2 Encoding Arbitrary Elements

Sometimes, when translating C to Jekyll, it is necessary to encode something
like “an arbitrary type” or “an arbitrary name”. For example, when translating
a C type to a Jekyll type, we allow the Jekyll type to have arbitrary additional
type parameters that were not present in the C type.

Given the data type given in Section 3.1 it is not obvious how one encodes
something like “an arbitrary type” or “an arbitrary expression”. If we were to
encode all possible types or expressions using “?” nodes then we would have
to build an infinite tree, significantly complicating the design of the translation
system.

To avoid this problem, the core translation system mines the previous version
of the file for instances of particular syntax elements. If the translate stage wants
to encode “an arbitrary type” then rather than describing all types possible in
the language, it lists all the types present in the previous version1.

At first it might seem that this technique would artificially restrict the choice
of types and prevent the select closest stage from selecting the encoding that
most closely matches the previous version. However, it turns out that this is not
the case. Since the select closest stage aims to minimize the distance from the
previous version, it will always choose types that appear in the previous version
in preference to types that do not. Thus there is no need to list types that do
not appear in the previous version, and no need for JT to support infinite ASTs.

3.3 Checking Correctness

Sometimes a C programmer will edit C code implementing a Jekyll feature such
that it is no longer a valid implementation of that Jekyll feature. For example JT
requires that if a C function is implementing a Jekyll lambda expression then the
first argument of that function must be the lambda expression’s environment.
If a C programmer changes the argument order then the function will no longer
be a correctly encoded lambda expression. While we could just translate the C

1 The actual implementation is a little cleverer than this, leaving some of the list
expansion until match time.

code to equivalent low-level Jekyll code, ignoring the Jekyll feature, it is likely
that this result is not what the programmer intended.

To deal with such cases, Jekyll will attempt to decode any code as a Jekyll
feature if it looks like the code intended to encode a Jekyll feature, even if
the code does not encode that feature correctly. Once JT has translated a C
file to a Jekyll file, it checks that the Jekyll file can be translated back to the
original C file. If it cannot then the programmer is warned that the result of the
transformation may be incorrect, and is encouraged to look at the differences
between their file and the correctly encoded C file.

3.4 Non-Deterministic Token Sequences

Rather than resolving non-determinism directly at the AST level, we instead
translate the AST into a non-deterministic token sequence and resolve the non-
determinism at the token level. While this approach might seem to be throwing
information away, our experience so far is that this method copes better with
real code edits, which do not always follow AST nesting structure2.

This non-determistic token sequence preserves all of the non-determinism
that was present in the non-deterministic AST, but reduces the abstraction
level down to a sequence of strings. Non-deterministic token sequences can be
described as follows:

t← v ? tf : tt non-deterministic choice
| t0 • t1 | “s” | ∅ sequence, literal, empty

The pretty print stage produces a non-deterministic token sequence by ap-
plying a pretty printing function to each node in the non-deterministic AST. A
“?” node in the AST is translated into a “?” node in the token sequence with
the same decision var and with choices that are produced by pretty printing the
choices from the AST node. All other nodes in the AST are pretty printed by
sequencing literal tokens together with token sequences from subtrees. As with
ASTs, non-deterministic token sequences use sharing to avoid blow-up.

3.5 Distance between Two Files

The select closest stage resolves a non-deterministic token sequence t into a
deterministic token sequence t′. In so doing it attempts to minimize the distance
between t′ and the previous tokens. (Figure 2).

The distance metric we have chosen is the number of distinct spans needed
to construct the target file from the previous file, where a span is defined to be
either a single token, or a consecutive sequence of tokens from the previous file.
For example, the distance from “int x = 3; int j” to “int j = 3; int z”
is 3, since the new string can be constructed from the following three spans: (i)

2 It may be worth experimenting more with tree-based matching.

“int j”, (ii) “= 3; int”, (iii) “z”. We believe this metric fits a programmers
intuitive model of what it means for files to be similar.

Note that this metric is not the same as the edit distance. Edit distance only
considers insertion, deletion, and substitution of a single character; it does not
consider copyings and reorderings of large blocks of text. If the order of two
functions was swapped, then the edit distance would be twice the number of
characters in the smaller of the two functions, while the number of spans would
be 2.

3.6 Optimal Translation is NP-Hard

Ideally, we would like the select closest stage to guarantee that it resolves a non-
deterministic token sequence to the token sequence that is closest to the previous
token sequence — we refer to this problem as optimal matching. Unfortunately,
optimal matching turns out to be NP-hard. This result is not surprising, given
a similar result is known for synchronizing database views [2].

We can demonstrate that optimal matching is NP-hard by showing that it
takes only a polynomial number of steps to translate any problem in 3-SAT
(known to be NP-hard) into an optimal-matching problem. The encoding [[A]] of
a 3-SAT expression A as a non-deterministic token sequence is quite simple:

[[v]] = v ? “true” : “false” [[¬v]] = v ? “false” : “true”
[[A ∧A′]] = [[A]] • [[A′]] [[A ∨A′]] = x ? [[A]] : [[A′]]

where x is fresh

The previous file is an infinite sequence of “true” tokens. Provided the 3-SAT
formula A has more than one disjunction3, the formula is satisfiable if and only
if the optimal matching of [[A]] has distance of 1 (a single span of “true” tokens).

Fortunately, like many NP-hard problems, we have found that it is pos-
sible to produce an approximate algorithm. Our current algorithm is a simple
greedy search that walks sequentially through the token sequence, choosing vari-
able assignments such as to maximize the length of the longest matching span4.
While the worst case performance of this algorithm is still exponential, we have
found that this algorithm runs in reasonable time and produces good results
on reasonable-size source files (Section 4). This is partly an artifact of the kind
of non-determistic ASTs produced by JT, in which the choices at a “?” node
tend to be quite different, and partly a result of the structure of C and Jekyll
programs, which tend to have fairly little textual self-similarity.

3.7 Synchronizing Comments and Whitespace

It is important that any comments present in one view of a file be also present in
the other file. Similarly it is important that synchronization not make gratuitous
changes to the whitespace of a file.
3 Since a single “false” token would also have distance 1.
4 The algorithm is omitted due to lack of space. See our tech report [8] for details.

JT divides whitespace into common and private whitespace. Common whites-
pace is considered to be part of the program representation and is carried across
during translation. The other whitespace is considered private and is inferred
non-deterministically to match the previous version of the target file.

The rules for distinguishing common and private whitespace are language-
specific. The intention is that common whitespace be used in places where com-
ments are typically placed, and private whitespace be used in cases where there
is no obvious corresponding location in the other language, or where the correct
whitespace is likely to be language-specific. A warning is generated if comments
are found in private whitespace.

4 Evaluating JT

In this section, we present a preliminary evaluation of JT. We start by showing
JT’s behaviour on simple snippets of code encoding non-C features (Section 4.1),
then evaluate its use on edits of source files from the GNU C Compiler [26]
(Section 4.2). We conclude with a discussion of the limitations of our prototype
(Section 4.3).

4.1 Feature Translation

We show here how JT handles the translation between two higher-level Jekyll
features not found in C: generic types and closures. The output code is a very
slightly cleaned-up version of the results of the JT tool, and is similar to real
examples we encountered when modifying GCC (Section 4.2).

Jekyll has generic types similar to those found in ML [21], Haskell [24], and
Cyclone [16]. Type variables are written as %a, rather than the more conventional
’a, to allow Jekyll files to be easily processed using the standard C preprocessor.
When generic types are translated into C, all generic type information is thrown
away. When translating back to Jekyll this information is reconstructed from
the previous file (Section 3.2). For example:

Jekyll
struct<%a> Node{
%a *element;
List<%a> tail;

};
%a* get_element(Node<%a>* x){
return x->element;

}

C
struct Node{
void *element;
List tail;

};
void* get_element(Node* x){
return x->element;

}

Jekyll supports closures and lambda expressions, as found in functional pro-
gramming languages such as ML. Closures are written with syntax similar to
Smalltalk [13], with arguments separated from their body by a colon. A lambda
expression is translated into a function with an environment argument5.
5 Free variables are passed by reference since they may be modified. In this case JT

could have passed z by value since ff dbl does not modify it.

Jekyll
int dbl(int z){
return twice(0,
{x: ret x+z;});

}

C
struct fe_dbl{
int *z;

};
int ff_dbl(struct fe_dbl *_env, int x){
return x+*(_env->z);

}
int dbl(int z){
struct fe_dbl ft = {&z};
return twice(3,(void*)&ff_dbl,&ft);

}

By default, Jekyll uses ff, fe and ft prefixes for lambda functions, closure
environment types, and closure values, however the programmer is free to change
these names to whatever they prefer, since JT allows arbitrary names to be used
(Section 3.2).

4.2 Edit Translation

To demonstrate the behavior of edits, we took the hashtab.c, hashtab.h, and
ssa.c files from the SPEC2006 version of GCC (3,070 lines total), and performed
a sequence of edits on them. For each edit, we note the language the edit was
made in (L), what the edit was and the effect it had in the other language, and
the number of lines that changed in C and Jekyll, as measured by diff 6 (DC and
DJ respectively). All file versions are available in the Jekyll source distribution.

L Description DC DJ
C Remove the use of macros that Jekyll does not understand. 55
C Convert to Jekyll – Jekyll is a near-superset of C, so only change is
#including ”hashtab.jkh” in place of "hashtab.h"

0 2

J Make the hashtable generic and make the visitor callback a closure —
leaves the C file largely unchanged. Most differences due to callback
arguments changing order, GCC source using PTR in place of void*,
Jekyll code replacing a typedef with a literal generic type

18 40

J Update ssa.c to use lambda expressions. Generated C file is correct. 376 358
C Rename generated lambda functions. Jekyll unchanged. 22 0
C Rename functions, reorder functions, and insert and delete code – all

mapping into correct Jekyll updates
42 43

C Reorder arguments to the closure type – No longer recognized as a
closure. Reverts back to being a basic function

2 2

No invocation of JT took more than 2.5 seconds on a Pentium 4 desktop.

4.3 Where it works, and where it doesn’t work

JT has two significant limitations. First, it does not support the C preprocessor
very well. Currently, Jekyll uses an ad-hoc series of annotations that tell JT how
6 Less accurate than our distance metric, but something people are familiar with

to treat particular macros (e.g., treat like a function of this type, or ignore). We
believe that the results of the Macroscope project [18] could be used to design a
better approach.

Secondly, as we saw in the last edit in Section 4.2, JT does not cope well
with some kinds of edits. In particular:

– Breaking encoding rules: Some encodings of Jekyll features into C have rules
that must be followed. For example closures must take their environment as
their first argument and features that expand to several statements require
that those statements not be re-ordered. If C edits break these rules then the
translation will either revert to the raw C, or generate non-equivalent Jekyll
code (Section 3.3). In some cases these rules could be relaxed (e.g., reordering
non-side-effecting statements), but in other cases they are necessary in order
to allow meaningful translation.

– Moving Between files: JT only looks at the current file. If code is moved
between files then the translation will revert to the defaults.

– Large updates: If an update has caused many separate changes to a file then
JT will find it harder to find the correct decoding, since the new version will
correlate less well with the old version. Synchronizing often is a good idea.

However our limited personal experience is that many kinds of update work
well. In particular, any C update that does not affect code implementing a Jekyll
feature is highly likely to work correctly, since the translate stage will find few
things that look like Jekyll features and the select-closest phase will be unlikely
to find close matches to Jekyll features. Similarly, we have found that simple
transformations such as renaming variables, reordering definitions, and adding
and deleting code work reliably.

Ideally, a synchronizer would be used with an interactive tool that allowed the
user to pick the correct translation in cases where the correct result is unclear.

5 Related Work

Much previous work has looked at connections between different languages: bidi-
rectional translation between different data formats, languages that are designed
to extend C, languages that are translatable to C, and tools that preserve pro-
gram formatting while editing. As far as we are aware, no previous work has
performed bi-directional synchronization between programming languages.

5.1 Bidirectional Translation

The concept of bidirectional translation between different data formats has ap-
peared in many different fields.

The Harmony project [9] uses a set of tree-based combinators [10] to trans-
form data structures between different data representations, with the aim of
allowing easy synchronization of data between different programs and devices.

Like JT, Harmony uses information from the previous file during translation.
Unlike JT, Harmony does all matching on local subtrees, based on the names of
nodes on the tree, rather than doing a global analysis based on textual compar-
isons. While this approach works well for the data-synchronization domain that
Harmony is designed for, it is not clear whether this approach would perform
well in the domain of programming language translation, where transformations
are complex and edits can move expressions to arbitrary positions in a program.

Meertens [20] applies the concept of bi-directional translation to the world
of user interfaces. The idea here is that a user interface provides a view onto
some underlying data, and constraints are established that ensure that the user
interface remains an accurate representation of the data, even when the data
or the user interface is manipulated. This approach is constraint based, and it
is not clear whether it could be applied to something as complex as translating
between programming languages.

In the database community, there has been a lot of work on “the view update
problem”, in which one tries to translate an update to a view into an appropriate
update to the underlying database [14,6]. As with JT, a view update is able to
see the previous version of a database when applying an update to it, and will try
to minimize the extent of the change made. Unlike JT, a view update operation
has the privilege of being able to see the exact update commands used, rather
than simply being presented with a changed file and trying to work out what
was intended.

Martin Fowler proposes the idea of a Language Workbench [11], which is an
IDE in which users write programs using multiple user-defined DSLs. In some
cases it may be possible to represent the same AST using different DSLs (e.g.,
graphical and Java representations of a GUI). As with database view updates,
the IDE translates operations rather than programs.

5.2 Inter-Language Translation

Many people have implemented language translators that translate one language
into another. For example FOR C [3] translates FORTRAN to C, and p2c [12]
translates Pascal to C. While the resulting program is human-readable, there is
no means to keep the files in sync if they are modified. Similarly, many compilers
perform one-way translations to C as part of their compilation process.

5.3 Languages that extend other languages

Many languages have extended C with new features. Cyclone [16], Vault [7],
Ivy [1], C++ [27], Objective C [23] and many others all add useful new features
to the core C language. While existing C code is often valid in these languages,
any use of new features will prevent the program being a valid C program. In
principle it should be possible for us to apply the transformation techniques used
by JT to translate one of these languages to and from C.

Several authors have designed systems that use macros, templates, and nam-
ing conventions to embed extra features into C programs. CCured [22] allows a

programmer to annotate their C programs with safety annotations, which are
used by the CCured compiler, but ignored by a C compiler. FC++ [19] is a
template library that makes it easy to express common functional programming
idioms. These languages benefit from the ability to retain full C/C++ compat-
ibility without translation, but are forced to use non-optimal syntax in order to
do so — as with our encoding of Jekyll into C.

6 Conclusions

While it would be necessary to perform detailed evaluations with real program-
ming teams to determine conclusively that multi-language synchronization works
in practice, our experience so far has been very positive. Those C programmers
that we have shown JT to have been impressed by its ability to cope with
changes to code updates and have claimed that they would be able to edit C
code generated from JT.

As part of the Ivy project [1], which aims to produce a system’s programming
language to replace C, we intend to apply multi-language synchronization to Ivy
and C, and use it to make modifications to large legacy systems. Ultimately, we
aim to convince external developers to use this system.

JT, the Jekyll Translator, is available on SourceForge at http://sourceforge.
net/projects/jekyllc

Acknowledgements

The design of Jekyll has been influenced by discussions with many people.
Particular thanks must go to Michael Dales, Minos Garofalakis, Simon Pey-
ton Jones, Bill McCloskey, Greg Morrisett, Alan Mycroft, Matthew Parkinson,
Claus Reinke, Richard Sharp, Simon Thompson, and everyone in the Kent The-
ory group, Cambridge Systems Research Group, and Berkeley Ivy group.

References

1. Brewer, E., Condit, J., McClosky, B., and Zhou, F. Thirty years is long
enough: Getting beyond C. In Proceedings of the USENIX workshop on Hot topics
in Operating Systems (2005).

2. Buneman, P., Khanna, S., and Tang, W. C. On propagation of deletions and
annotations through views. In PODS’02 (2002).

3. FOR C: Converts FORTRAN into readable, maintainable C code.
http://www.cobalt-blue.com.

4. C# Language Specification. ECMA, June 2005.
5. Date, C. J. A Guide to the SQL Standard. Addison-Wesley, 1986.
6. Dayal, U., and Bernstein, P. A. On the correct translation of update operations

on relational views. ACM Transactions on Database Systems 8 (Sept. 1982).
7. DeLine, R., and Fahndrich, M. Enforcing high-level protocols in low-level soft-

ware. In Proceedings of the ACM conference on Programming Language Design
and Implementation (2001).

http://sourceforge.net/projects/jekyllc
http://sourceforge.net/projects/jekyllc

8. Ennals, R. Dr Jekyll and Mr C. Tech. Rep. IR-TR-2005-104, Intel Research,
2005.

9. Foster, J. N., Greenwald, M. B., Kirkegaard, C., Pierce, B. C., and
Schmitt, A. Schema-directed data synchronization. Tech. Rep. MS-CIS-05-02,
University of Pennsylvania, March 2005.

10. Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C., and
Schmitt, A. Combinators for bi-directional tree transformations: A linguistic
approach to the view update problem. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’05) (2005).

11. Fowler, M. Language workbenches: The killer-app for domain specific languages.
http://www.martinfowler.com/articles/languageWorkbench.html, June 2005.

12. Gillespie, D. p2c – a Pascal to C translator.
13. Goldberg, A., and Robson, D. Smalltalk-80: The Language. Addison-Welsey,

1989.
14. Gottlob, G., Paolini, P., and Zicari, R. Properties and update semantics of

consistent views. ACM Transactions on Database Systems 13 (Dec. 1988).
15. The Java Language Specification, third edition. Sun Microsystems, 2005.
16. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., and Wang,

Y. Cyclone: A safe dialect of C. In Proceedings of the USENIX annual technical
conference (2002).

17. Mashey, J. R. Languages, levels, libraries, and longevity. ACM Queue 2, 9 (Dec.
2004).

18. McCloskey, B., and Brewer, E. ASTEC: A new approach to refactoring c. In
Proceedings of the 10th European Software Engineering Conference (Sept. 2005).

19. McNamara, B., and Smaragdakis, Y. Functional programming in C++. In
Proceedings of the ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’00) (Sept. 2000).

20. Meertens, L. Designing constraint maintainers for user interaction. manuscript,
1998.

21. Milner, R., Tofte, M., Harper, R., and MacQueen, D. The Definition of
Standard ML (Revised). The MIT Press, 1997.

22. Necula, G. C., Condit, J., Harren, M., McPeak, S., and Weimer, W.
CCured: type-safe retrofitting of legacy software. ACM Transactions on Program-
ming Languages and Systems (2004).

23. The Objective C Programming Language. Apple, Oct. 2005.
24. Peyton Jones, S., Hughes, R., Augustsson, L., Barton, D., Boutel, B.,

Burton, W., Fasel, J., Hammond, K., Hinze, R., Hudak, P., Johnsson, T.,
Jones, M., Launchbury, J., Meijer, E., Peterson, J., Reid, A., Runci-
man, C., and Wadler, P. Report on the programming language Haskell 98.
http://haskell.org, Feb. 1999.

25. Pyle, I. C. ADA Programming Language. Prentice Hall, 1981.
26. Stallman, R. M. Using and Porting GNU CC (Version 2.0). Free Software

Foundation, Feb. 1992.
27. Stroustrup, B. The C++ Programming Language. Addison Wesley, 1997.
28. Wadler, P. Why no-one uses functional languages. SIGPLAN Notices 33 (Aug.

1998).
29. Wall, L., Christiansen, T., and Orwant, J. Programming Perl. O’Reilly, July

2000.

http://www.martinfowler.com/articles/languageWorkbench.html

	Multi-Language Synchronization
	Robert Ennals David Gay

