
Language Support for Interoperable Messaging in Sensor
Networks

Kevin Chang
∗

Department of Computer Science
University of California,

Los Angeles, CA 90095-1596

kchang@cs.ucla.edu

David Gay
Intel Research Berkeley

2150 Shattuck Ave, Suite 1300
Berkeley, CA 94704

david.e.gay@intel.com

ABSTRACT
Development of network communication in a homogeneous sen-
sor network environment is straightforward as the nodes can share
message layouts simply by letting the compiler lay out messages
in an arbitrary fashion and using the same executable code on all
nodes. However, this simple approach does not usually work in a
heterogeneous sensor network setting because different compilers
may generate different message layouts, and different processors
often have different basic type representations and alignments. The
traditional solutions to this problem is to either require program-
mers to insert network-byte-order and host-byte-order conversions,
or to use a compiler that automatically generates marshalling and
unmarshalling routines. Unfortunately, these approaches are in-
adequate for sensor networks because they are either error-prone
and/or add significant overheads to already resource-constrained
sensor motes. Instead, we propose a language extension —network
types— which supports heterogeneous networking in a simple and
efficient way. We have implemented network types in the nesC,
the language of the TinyOS sensor network operating system and
its applications. We have used network types to supports heteroge-
neous networking betweenmicaz andtelos motes (which have
different alignment restrictions). We also show that our implemen-
tation introduces a negligible amount of overhead in runtime and
code size. Network types have the additional benefit of requiring
few changes to existing TinyOS code.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Data types and structures; C.2.0 [Communication Net-
works]: General—Data communications

General Terms
Design, Languages

∗Partially supported by the NSF ITR award 0427202

Keywords
Data layout, Heterogeneous networks, Sensor networks

1. INTRODUCTION
Early sensor network platforms such as themica [1] andmica2
use non-standard, platform-specific radios that are not interoper-
able with one another. Consequently, existing sensor networks
have mostly consisted of homogeneous nodes. In May of 2003
the IEEE approved the 802.15.4 radio MAC (medium access con-
trol) and physical layer standard, standards which are designed
specifically for Low Rate Wireless Personal Area Networks (LR-
WPANs). Several new sensor network platforms such as themicaz
andtelos support this new radio standard, allowing them to com-
municate with each other. This allows designers to build hierar-
chical networks from heterogeneous nodes, leading to improved
scalability, flexibility and lifetime [2, 3]. In addition, many sen-
sor network designers already require some degree of heterogene-
ity for development and testing in simulated frameworks such as
the TinyOS Simulator [4] and EMStar [5].

It is thus highly desirable for these platforms to interoperate with
one another. The 802.15.4 standard addresses packet representation
up to the MAC layer; further standardization of packet formats is up
to the higher layers of the protocol stack and the application. In the
case of TinyOS [6] — the operating system of themica , mica2 ,
micaz and telos motes — these protocols are currently speci-
fied in a platform-dependent manner, precluding interoperation.

This problem is of course not new. One standard solution is to de-
fine a platform-independent data layout language such as ASN.1 [7]
or XDR [8] to define packet representations, and use automatically-
generatedmarshallingandunmarshallingroutines to convert this
representation to/from some host-specific representation. Another
approach is to have the programmer insert calls to data format con-
version functions (e.g., Unix’shtons , ntohs , etc functions) when
accessing packet fields. We argue (Section 4) that the first approach
is inappropriate for resource-constrained sensor network nodes (a
few kB of RAM, must run off batteries for months), and that the
second is hard to make portable, time-consuming and error-prone.

In this paper, we propose a different solution based on extending
the nesC programming language [9], used to implement TinyOS
and its applications. We add new types and type-constructors (ar-
rays, records) whose representation is platform-independent. We
call these typesnetwork types; a program which only uses network
types to access packets will automatically support heterogeneous



environments. Network types have several advantages. First, as
they are integrated into the language’s type system, they are very
easy to use: a received packet (array of bytes) can simply be cast
to a network type, and accessed like a regular data structure. Sec-
ond, because existing TinyOS code uses a similar model, it is very
easy to modify existing TinyOS programs to use network types.
Finally, using network types does not require any extra RAM re-
sources, which is important on severely resource-constrained sen-
sor network nodes. One disadvantage of network types is that ac-
cesses to packets may incur extra overhead, as the host’s load/store
instructions may not be usable because of alignment restrictions.
We show (Section 5) that this overhead is very low in practice.

Network types are available in version 1.2 of the nesC program-
ming language, available from SourceForge. TinyOS 2.0, currently
under development, will use network types for all its network pro-
tocols.

The rest of this paper is structured as follows: Section 2 surveys
related work. Section 3 presents background material on TinyOS,
nesC, and the hardware platforms they support. Section 4 presents
our rationale for network types, their design, and their implemen-
tation in the nesC compiler. Section 5 presents our evaluation of
network types on a set of applications and platforms. We conclude
in Section 6 with a discussion of possible language extensions and
future directions.

2. RELATED WORK
Many languages have been proposed for defining platform inde-
pendent data-types, of which the most popular are ASN.1 (Ab-
stract Syntax Notation One) [7] and XDR (External Data Repre-
sentation) [8]. ASN.1 separates data type definition and data ob-
ject encodings, and has multiple encoding standards including Ba-
sic [10] and Packed [11] Encoding Rules. Unlike network types,
these are typically used with stub generators to convert between the
network representation and some corresponding type in a particu-
lar programming language. There are many marshalling function
generators, supporting various source data-description languages
and target programming languages, including USC (Universal Stub
Compiler) [12], Flick [13] and MAVROS [14]. In Section 4.1 we
discuss why this approach is inappropriate for severely hardware
constrained sensor networks.

Distributed object paradigms to solve data heterogeneity include
Java RMI/Serialization, CORBA [15], and DCOM [16]. These
paradigms use explicit typing and are too heavyweight for memory-
and bandwidth-constrained motes.

The definition of records in Ada [17] includes “representation clauses”
to specify some aspects of in-memory record representation. How-
ever, these are not sufficient to guarantee a platform-independent
representation. In particular, these clauses need not be respected
by a compiler, and there is no specification of byte-endianness for
multi-byte integers (though bit-endianness can be specified). C++’s
facility to overload assignment and define implicit conversions can
be used to build integer types with a specific layout. Combining
this with gcc ’s attribute((packed)) extension gives a fa-
cility similar to network types. However, this relies on a compiler-
specific extension, cannot be extended to support bitfields and does
not allow for network-type-specific compile-time checks and opti-
mizations.

Unsurprisingly, languages designed for network processors include

facilities similar to network types. For instance, in Intel’s NCL lan-
guage [18, Chapter 16] a programmer can define aprotocol and
specify the names, layouts and representations of its fields. How-
ever, NCL is not a general purpose programming language that can
be readily ported for use in existing sensor network systems that
use TinyOS.

3. BACKGROUND
We briefly cover TinyOS [6], it’s nesC [9] programming language,
and the main TinyOS hardware platforms.

3.1 nesC and TinyOS
TinyOS is the most popular operating system for sensor network
motes, and is used by hundreds of groups worldwide. TinyOS pro-
grams are built by assembling components, which contain appli-
cation logic, operating system services (e.g., timers), and, in par-
ticular, different layers of the network stack. TinyOS does not
contain a single network stack, rather application designers build
their own stack by selecting amongst compatible components for,
e.g., multi-hop routing. TinyOS programs are written in nesC, a
component-oriented programming language. nesC’s components
are eitherconfigurations, which connect components together, or
modules, which contain executable code written in a C variant. The
use of C for executable code provides all the low-level features
necessary for accessing hardware resources. The nesC compiler
generates C, which is then compiled by a platform-specific C com-
piler. Most current TinyOS network protocols and applications use
C structs to define packet layouts. As a result, TinyOS applications
built on different hardware architectures do not interoperate.

3.2 Hardware Platforms
TinyOS runs on many different platforms, including CrossBow’s
mica , mica2 , micaz 1, and Moteiv’stelos 2. Additionally,
TinyOS programs can be run in a simulation environment on PC’s.
Characteristics of these platforms are shown in Table 1. Alignment
is the largest alignment of any type on the given processor, e.g., 16-
bit integers must be aligned on a 2-byte boundary on the TI MSP
430. While the x86 does not have alignment requirements, com-
pilers do align data to improve performance. As this table shows,
platforms are in constant evolution. In addition, most of the soft-
ware abstractions are specialized and/or are still in flux [19], mak-
ing portability and maintenance a necessary task.

Earlier platforms such as themica , andmica2 use non-standard
radios, with different frequencies, modulation, data rates, and pro-
tocols, and are thus unable to communicate with one another. The
newermicaz and thetelos conform to the IEEE 802.15.4 stan-
dard. These last two are the platforms we use in our evaluation of
network types. Processing power is relatively plentiful given the
nature of sensor networks; sensor data acquisition programs tend
to be inactive most of the time and require minimal data rate on the
radios. On the other hand, RAM is the most constrained resource.

4. DESIGN
We start by considering existing approaches to supporting hetero-
geneous networks (Section 4.1) before presenting the design (Sec-
tion 4.2) and implementation (Section 4.3) of network types.

A few basic principles guide our decisions. First, we want the com-
piler to automatically convert data for use on the host with minimal
1http://www.xbow.com
2http://www.moteiv.com



Mote Type mica mica2 micaz telos Tmote sky PC

Date 2/02 10/03 10/04 9/04 3/05 8/81
Microcontroller
Type Atmega103 Atmega128 MSP 430 x86
Frequency 4MHz 7.2MHz 8MHz GHz
Size (bit) 8 16 32
Code (KB) 128 60 48 large
RAM (KB) 4 2 10 large
Alignment 1 2 4
Endianness little
Communication
Radio RFM TR1000 CC1000 802.15.4 none
Rate (Kbps) 10 20 250
Modulation ASK FSK O-QPSK

Table 1: Popular TinyOS platforms.

data[]

data[]

TOS_BCastMsg (flooding)
data[]seqno(16)

TOSMsg
fcflo(8)fcfhi(8)length(8) dsn(8)

SurgeCmdMsg

newrate(32)type(8)

focusaddr(16)type(8)

type(8)

SurgeMsg
reading(16)type(8) parentaddr(16)

TOS_MHopMsg (multihop routing)
sourceaddr(16) seqno(16) hopcount(8)origaddr(16)

Application (Surge) Layer

Data Link Layer

Network Layer

destpan(16) addr(16) type(8) group(8)

Figure 1: Layers and Packet Layout in Surge

programmer assistance. In addition, we want the minimize the CPU
and, especially, RAM overhead of data conversion. Lastly, we want
to make it easy for programmers to migrate legacy TinyOS code.

Throughout this section we use the Surge application from TinyOS
to illustrate some the issues and potential solutions in supporting
heterogeneous network environments. Surge is an application that
performs periodic sensor sampling, uses multi-hop routing to de-
liver packets, and responds to simple commands. Figure 1 shows
the three layers of the Surge protocol stack, and their data layouts.
Each line represents a protocol’s layout, each rectangle represents
a field in that layout and includes its size in bits. Adata[]
field is a variable-size payload for the next layer. For example,
TOSBCastMsg , used for flooded commands, contains just a 16-
bit sequence number (seqno ) and the next layer’s payload (data ).
These layouts are all currently defined using Cstruct s.

4.1 Existing Approaches to Interoperability
We consider three standard solutions for attaining interoperability
between network protocols, and discuss why they are inappropriate
in TinyOS.

The first approach is to define a typeM which represents all possi-
ble packets that can be sent and received by the application, and use
marshalling and unmarshalling routines to convert values of type
M between network (platform-independent)Mn and hostMh rep-
resentations. Programs can operate on values of typeMh, and the
marshalling and unmarshalling routines can be called at the lowest
level of the network stack, just before messages are sent and just

after they are received. In the Surge example,M is a type that
represents all of Figure 1.

A major problem with this approach is obtaining the definition of
M . Defining M manually is a laborious process in the TinyOS
model, as the programmer would have to examine all the com-
ponents used in the network stack and extract their packet lay-
out information. This is repetitive and time consuming, and leads
to maintenance problems when, e.g., the programmer decides to
use a new, improved routing component with a different packet
header. To extractM automatically is also hard: the compiler
needs to know which components form the network stack, how
they are assembled, and what packet layout they use. The pres-
ence of variable-size headers (common in existing protocols such
as TCP/IP) would further complicate this process. We thus rejected
this approach as requiring excessive language (to declare protocol-
related issues) and compiler changes.

The second approach is similar, but defines a typeMp for each pro-
tocol, and uses marshalling and unmarshalling routines to convert
values of typeMp between networkMpn and hostMph represen-
tations in each protocol layer. A TinyOS component can call these
marshalling and unmarshalling functions just after receiving from,
and just before sending packets to, lower layers. In Surge, there
would be marshalling functions for theTOSMsg, TOSMHopMsg,
TOSBCastMsg , SurgeCmdMsg andSurgeMsg types.

This approach requires a copy of data at each layer of the proto-
col stack. The CPU overhead of this is not that significant (sensor
network messages are small), but each copy also requires an ex-
tra RAM buffer: because of alignment restrictionsMph may be
larger thanMpn so conversion cannot happen in-place.3 Section 5
reports on the costs of this approach onmicaz motes. This ap-
proach would also require significant changes in existing TinyOS
components, to include extra buffers, define theMp types, include
the marshalling functions, and add appropriate calls to them. We
thus also rejected this approach.

The third approach is similar to current TinyOS practice: a data
structure is defined in C which matches the packet layout, and the
programmer manually inserts calls to functions like Unix’shtons
(16-bit int host-to-network format conversion) to deal with endi-
anness issues. This programming style is used, e.g., for the Unix

3The network representation could make some pessimistic align-
ment assumptions but this would waste space, and hence energy, in
every radio packet.



TCP/IP socket functions. In the Surge example, this would corre-
spond to adding conversion functions on all accesses to fields such
asreading , parentaddr , etc.

This approach has two major problems. First, as in TinyOS, the
code may not be portable as C and most other languages provide
few guarantees as to data structure layout. Thus the structure which
matches the packet layout on one platform may not on another be-
cause of alignment issues. This portability problem can be avoided
by using only arrays of characters addressed via constant offsets,
but this makes code unreadable and hard to maintain. Second,
adding the manual conversion functions is an error-prone process.
This approach would represent the smallest change from current
TinyOS practice, but would provide the programmer little help in
supporting heterogeneous network environments.

4.2 Network Types
Network types, our extension to nesC for platform-independent net-
working, is closest in spirit to the third approach considered above:
the programmer defines a data structure, using syntax very similar
to existing C type declarations, which matches the packet layout,
and just accesses it like a regular C type. The compiler ensures that
this type has the same representation on all platforms and generates
any necessary conversion code. For instance, theSurgeCmdMsg
type definition using network types is:

typedef nx_struct {
nx_uint8_t type;
nx_union {

nx_uint32_t newrate;
nx_uint16_t focusaddr;

} args;
} SurgeCmdMsg;
...

SurgeCmdMsg *pCmdMsg = (SurgeCmdMsg *)payload;
if (pCmdMsg->type == SURGE_TYPE_SETRATE) {

timer_rate = pCmdMsg->args.newrate;
...

Unlike the two marshalling-based approaches, no extra buffers are
needed. Additionally, the compiler does not need any global knowl-
edge about the network stack to generate the conversion code. The
disadvantage is that if the program accesses certain data fields re-
peatedly, conversion occurs repeatedly as well, causing higher run-
time costs than the marshalling/unmarshalling method. However
we find that in practice (Section 5) these overheads are low, and
dwarfed by the cost of sending or receiving a message.

Formally, nesC includes three kinds of network types.Network
base typesare similar to the fixed size types defined ininttypes.h ,
they include 8, 16, 32 and 64-bit signed and unsigned integers de-
noted by the typesnx int8 t , nx uint8 t , nx int16 t , etc.
Network array typesare any array built from a network type, using
the usual C syntax, e.g,nx int16 t x[10] . Network structures
are declared like C structures and unions, but using thenx struct
andnx union keywords (as in theSurgeCmdMsg example above).
A network structure can only contain network types as elements.
All these network types can be used exactly like regular C types,
with a few restrictions which will be lifted in future versions:

• Network base types cannot be used in casts, as function ar-
guments and results (the programmer can simply use the cor-
responding non-network types such asuint16 t ).

• Declarations of variables of a network base type cannot have
an initializer.

• Network structures cannot contain bit-fields.

Network types have no alignment restrictions, network structures
contain no padding, and the network base types use a 2’s com-
plement, big-endian representation. Thus their representation is
platform-independent, and any arbitrary section of memory can be
accessed via a network type. The endianness of the base types is
big-endian as this is the dominant endianness in existing network-
ing protocols.4

Network bit-fields are not currently supported. This limitation is
acceptable as they are not widely used in existing TinyOS pro-
grams. A careful inspection of the TinyOS repository which in-
cludes code contributed by many different research institutions dur-
ing the month of April 2005 shows that there are 2687 structs, of
which 189 contain bit-fields, of which only 15 are used by applica-
tions that transmit on the radio. Likewise, UCLA’s CENS reposi-
tory contains 3111 structs, of which 192 contain bit-fields, of which
only 25 are used by applications to transmit on the radio.

4.3 Network Types Implementation
The nesC compiler compiles nesC programs to C, which are then
passed to a native compilers such asmsp430-gcc or avr-gcc .
We considered two code-generation strategies: converting all net-
work types to byte arrays, and preserving the structure of the net-
work types in the generated C code.

Generating byte arrays for network types is done by replacing any
use of a network type by a correspondingly-sized byte array. For
instance:

SurgeCmdMsg x; --> char x[5];

and accesses to network types are replaced by appropriate array
operations:

SurgeCmdMsg *pCmdMsg = (SurgeCmdMsg *)payload;
if (pCmdMsg->type == SURGE_TYPE_SETRATE)

timer_rate = pCmdMsg->args.newrate;

becomes:

char *pCmdMsg = (char *)payload;
if (pCmdMsg[0] == SURGE_TYPE_SETRATE)

timer_rate = NTOH32(&pCmdMsg[1]);

whereNTOH32is a function to decode a 32-bit network int. Gener-
ating byte arrays for all network types ensures maximal portability
as it does not depend on any assumptions about how the underlying
C compiler represents types (see below). However, it requires that
the nesC compiler replace all field accesses by offsets, replace uses
of offsetof , and many other issues. In particular, C arrays behave
differently from other C types, so all assignments, casts, pointers
involving network types (note, e.g., the declaration ofpCmdMsg
in the example above) require special handling. We thus rejected

4For completeness, we also provide little-endian versions of the
base types, namednxle ... .



this approach in favor of a type-structure-preserving transforma-
tion, described next.

The other approach is to replace (in the generated code) each net-
work type with an “equivalent” C type, by translatingnx struct
andnx union to struct andunion and defining the network base
types as astruct containing a byte array. We can then do a much
simpler translation of expressions involving network types:5

• If e is a read of a network base typet, replacee byNTOHt(& e) ,
whereNTOHt is the function to decode a sequence of bytes
representing network base typet.

• If e1 = e2 is a write to a network base typet, replace it by
HTONt(& e1, e2) , whereHTONt is the function to encode
a value into a byte array for a network base typet.

For instance, our Surge example becomes:

typedef struct { char data[4]; } nx_uint32_t;
static inline unsigned short NTOUH32(void *target) {

unsigned char *base = target;
return (unsigned long)base[3] << 24 |

(unsigned long)base[2] << 16 |
base[1] << 8 | base[0];

}
...
typedef struct {

nx_uint8_t type;
union {

nx_uint32_t newrate;
nx_uint16_t focusaddr;

} args;
} SurgeCmdMsg;
...
SurgeCmdMsg *pCmdMsg = (SurgeCmdMsg *)payload;
if (NTOUH8(&pCmdMsg->type) == SURGE_TYPE_SETRATE) {

timer_rate = NTOUH32(&pCmdMsg->args.newrate);
...

For this translation to be correct, a structure containing only charac-
ters (such asnx uint32 t ) should have no alignment restrictions,
and the same must hold for structures containing such structures
(e.g.,SurgeCmdMsg). This is true on many, but not all platforms:
on ARM processors, all structures are aligned to 4-byte boundaries,
and on Motorola 68K processors they are aligned to 2-byte bound-
aries. We currently work around this problem by using gcc’s non-
standardpacked attribute. A fully portable (to all compilers and
platforms) implementation of network types would require imple-
menting the byte-array approach sketched above.

5. EVALUATION
To validate our network types implementation we test interoper-
ability betweenmicaz and telos motes by modifying TinyOS
and some TinyOS implementations to use network types. We re-
port the size of these changes and measure their runtime overhead;
furthermore, we compare the network types overhead with mar-
shalling onmicaz motes. Since the sensor network applications
we observed are mostly idle and non time-critical, the changes in
running time do not affect their behaviors.

5Read/write operators like ++, +=, etc require a slightly more in-
volved translation using a temporary variable.

Application Mote Changed Lines Original Network
TinyOS 33
CntToRfm micaz 3 9.5kB 9.6kB

telos 12.6kB 12.8kB
RfmToLeds micaz 3 9.1kB 9.1kB

telos 12.3kB 12.4kB
OscilloscopeRF micaz 11 11.3kB 11.4kB

telos 16.6kB 16.8kB
Surge micaz 10 15.5kB 16.0kB

telos 20.6kB 21.2kB

Table 2: Source code changes and compiled code size when us-
ing network types (compiled with optimization on).

5.1 Interoperability
We successfully tested the interoperability betweentelos and
micaz motes on a set of TinyOS applications converted to use net-
work types. These applications are CntToRfm, RfmToLeds, Oscil-
loscopeRF and Surge. CntToRfm is a straightforward application
that sends an incrementing value on the radio, while RfmToLeds
receives this value and displays it on the mote’s LEDs. Oscillo-
scopeRF periodically senses the environment, then sends batches
of values on the radio. Surge (discussed above) uses multihop rout-
ing; its use of TinyOS protocols is very similar to that of realistic
sensor network applications such as TinyDB [20]. Our network
consists of onemicaz and onetelos mote for CntToRfm, Rfm-
ToLeds and OscilloscopeRF, and of twomicaz ’s (one the root of
the multi-hop tree) and onetelos for Surge.

Table 2 summarizes the size of the changes to use network types,
and their effect on program size. Changed Lines is the number of
lines of code changed to use network types, Original is the com-
piled size of the original program and Network is the size of the
program with network types. The TinyOS row presents the sizes
of the changes to core TinyOS components, i.e., the basic TinyOS
TOSMsgtype and the TinyOS MintRoute multi-hop routing (in
tos/lib/MintRoute ) and flooding (tos/lib/Broadcast )
libraries (used by Surge). Additionally, we eliminated some dif-
ferences between themicaz andtelos motes by deleting some
components modified for themicaz platform (FramerM and NoCr-
cPacket) and by using a common, network-type based definition for
the basic TinyOSTOSMsgtype. Our version of Surge is slightly
modified from the TinyOS one so as to supporttelos motes; we
do not include the size of these changes in Changed Lines.

The ROM increase for using the network types is small as shown in
Table 2. The worse case is Surge where it is only 3%. The changed
lines represent only changes to type declarations and uses, no logic
changes were required in any of these applications.

5.2 Overhead
The runtime penalty for using network types is negligible, as long
as we enable optimization when compiling the generated C code:
Figure 2 shows the runtime of the four applications of Table 2
on micaz motes without using any optimization, and Figure 3
shows the same graph using optimization (gcc’s-Os optimization
flag). The results are the sum of the times, in clock cycles, to pre-
pare, send, receive and process a message6. Each application con-
tains three bars, corresponding to the runtime of the original code,
the network types code, and the first marshalling method of Sec-
tion 4.1. The three sub-elements per bar correspond to the amount
of time spent in different layers in the network stack — the actual

6Excluding lightweight services such as leds, timers, etc.



0

5000

10000

15000

20000

25000

O
ri
gi

na
l

N
et

w
or

k 
Ty

pe

M
ar

sh
al

lin
g

O
ri
gi

na
l

N
et

w
or

k 
Ty

pe

M
ar

sh
al

lin
g

O
ri
gi

na
l

N
et

w
or

k 
Ty

pe

M
ar

sh
al

lin
g

O
ri
gi

na
l

N
et

w
or

k 
Ty

pe

M
ar

sh
al

lin
g

O
ri
gi

na
l

N
et

w
or

k 
Ty

pe

M
ar

sh
al

lin
g

CntToLedsAndRfm RfmToLeds OscilloscopeRF Surge(1) Surge(2)

cl
o
ck
s

Data Layer

Network Layer

App Layer

Figure 2: Runtime cost of network types and marshalling with-
out using compiler optimization.

application, network,7 and data-link layers. Note that Surge(1) is
a standalone Surge application whereas Surge(2) is a pair of Surge
applications interacting with one another.

We obtain these results by manually modifying the applications to
keep track of the runtime on different network layers onmicaz
motes. Runtime is measured as clock cycles by accessing the sys-
tem clock and then averaging the results of 100 messages. The
cost of accessing this system clock is low (a few cycles), so this
instrumentation does not significantly affect the time spent in the
network layers; furthermore, this overhead is identical for all mea-
surements. Because Surge(2) has an initial setup time (to build its
ad-hoc routing tree), its results are obtained after the system stabi-
lizes.

As expected (Figure 2), all layers show small runtime increases
for network types. For marshalling, the increase happens only in
the network layer runtime as it contains the network-to-host and
host-to-network encoding functions. For example, for unoptimized
OscilloscopeRF, the application layer runtime for network types is
2850 cycles, and only 1940 cycles for both the original and mar-
shalling cases. Conversely, the network layer takes 2770 cycles for
marshalling, 1400 cycles for network types and 1000 cycles for the
original code. Once we turn on optimization (Figure 3), we see
that network types has less overhead than marshalling onmicaz
motes, and only a small overhead (the best case is Surge without
any overhead, and the worst case is CntToLedsAndRfm, with 67
more cycles or 4.1%) over the original code. Themicaz mote has
only 8-bit loads, thus the differences between original and network
type execution time reflect places where the C compiler compiles
loads and shifts into less efficient code than multi-byte loads.

Note that in both graphs, the increase in both the application and
network layer are negligible compared to the large number of cy-
cles required for actual packet transmission in the data layer (The
CC2420-based radio on themicaz takes about 1ms, i.e., 7000
cycles to send a 32-byte packet).

5.3 Surveys
We conducted an informal survey in UCLA’s CENS lab and found
out that it is routine to use gcc’sattribute ((packed)) for
all message types. While this has worked for all past platforms,

7We use the term loosely, to mean all packet processing between
the data-link and application layers.

0

1000

2000

3000

4000

5000

6000

O
ri
gi

na
l

N
et

w
or

k 
Ty

pe

M
ar

sh
al

lin
g

O
ri
gi

na
l

N
et

w
or

k 
Ty

pe

M
ar

sh
al

lin
g

O
ri
gi

na
l

N
et

w
or

k 
Ty

pe

M
ar

sh
al

lin
g

O
ri
gi

na
l

N
et

w
or

k 
Ty

pe

M
ar

sh
al

lin
g

O
ri
gi

na
l

N
et

w
or

k 
Ty

pe

M
ar

sh
al

lin
g

CntToLedsAndRfm RfmToLeds OscilloscopeRF Surge(1) Surge(2)

cl
o
ck
s

Data Layer

Network Layer

App Layer

Figure 3: Runtime cost of network types and marshalling using
compiler optimization.

compilation for new telos motes (whose msp430 processor requires
2-byte alignment for most types) fails because its native compiler,
msp430-gcc does not fully support packing. The work around in
CENS is to manually insert padding where necessary to guarantee
interoperability.

The idea of using network types is thus very appealing because
there are numerous legacy programs that would require manual and
laborious porting to telos motes. In addition, future platforms may
require additional efforts to port, e.g., for big-endian platforms.
With network types, developers can “write once, run on any mote.”

6. CONCLUSION AND FUTURE WORK
Our solution to sensor network heterogeneity is simple, efficient,
and easy to use. We designed and implemented network types,
an extension to the nesC programming language to support types
with a platform-independent representation. Unlike traditional ap-
proaches based on marshalling, network types let the programmer
operate on packets in the network representation just like any other
C type.This makes it easy to implement new, and modify existing
TinyOS applications and protocols to interoperate on various hard-
ware platforms. We found that network types made it possible to
port existing TinyOS applications with very limited source code
changes, needing minimal time and effort. Additionally, network
types imposed no RAM, and little CPU, overhead.

In the future, we plan to address the current limitations of network
types (mostly the lack of bitfield support), and investigate their use
in other scenarios than sensor networks. If the CPU overhead of
network types becomes an issue, we believe that there are several
opportunities for optimizing network type accesses: avoiding un-
necessary network/host and host/network conversions if the host
representation is not used, avoiding repeated conversions on mul-
tiple reads of the same network type, temporarily storing network
types in host order.

The upcoming version 2.0 of TinyOS will use network types; we
hope that the wider TinyOS community will also adopt network
types as a basis for platform-independent networking.

7. ACKNOWLEDGMENTS
We thank Jens Palsberg, Benjamin Greenstein, Phil Levis and Wei
Hong for helpful comments on the design of network types.



8. REFERENCES
[1] Jason L. Hill and David E. Culler, “Mica: A wireless

platform for deeply embedded networks,”IEEE Micro, vol.
22, no. 6, pp. 12–24, 2002.

[2] Mark Yarvis, Nandakishore Kushalnagar, Harkirat Singh,
Anand Rangarajan, York Liu, and Suresh Singh, “Exploiting
Heterogeneity in Sensor Networks,” inIEEE INFOCOM,
Mar. 2005.

[3] Y. Ge, L. Lamont, and L. Villasenor, “Improving Scalability
of Heterogeneous Wireless Networks with Hierarchical
OLSR,” in The OLSR Interop and Workshop, Aug. 2004.

[4] Matt Welsh Philip Levis, Nelson Lee and David Culler,
“TOSSIM: Accurate and Scalable Simulation of Entire
TinyOS Applications,” inIn Proceedings of the First ACM
Conference on Embedded Networked Sensor Systems
(SenSys 2003), 2003.

[5] Lewis Girod, Jeremy Elson, Alberto Cerpa, Thanos
Stathopoulos, Nithya Ramanathan, and Deborah Estrin,
“EmStar: a Software Environment for Developing and
Deploying Wireless Sensor Networks,” inProceedings of the
2004 USENIX Technical Conference, Boston, MA, 2004,
USENIX, To appear.

[6] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar,
David E. Culler, and Kristofer S. J. Pister, “System
Architecture Directions for Networked Sensors,” in
Architectural Support for Programming Languages and
Operating Systems, 2000, pp. 93–104, TinyOS is available at
http://www.tinyos.net.

[7] “Information technology – Abstract Syntax Notation One
(ASN.1): Specification of basic notation,” ISO/IEC Standard
8824-1:2002.

[8] Sun Microsystems, Inc., “RFC 1014 - XDR: External Data
Representation,” 1987.

[9] David Gay, Phil Levis, Rob von Behren, Matt Welsh, Eric
Brewer, and David Culler, “The nesC language: A holistic
approach to networked embedded systems,” inSIGPLAN
Conference on Programming Language Design and
Implementation (PLDI’03), June 2003.

[10] “Information technology – ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules
(DER),” ISO/IEC Standard 8825-1:2002.

[11] “Information technology – ASN.1 encoding rules:
Specification of Packed Encoding Rules (PER),” ISO/IEC
Standard 8825-2:2002.

[12] Todd Proebsting Sean O’Malley and Allen Brady Montz,
“USC: A Universal Stub Compiler,” inProceedings of the
Conference on Communications Architectures, Protocols and
Applications (SIGCOMM), Aug. 1994.

[13] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary
Lindstrom, “Flick: A flexible, optimizing idl compiler,” in
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’97), June 1997.

[14] Christian Huitema, “MACROS: Highlights of an ASN.1
Compiler,” Tech. Rep. Internal working paper, INRIA
Project RODEO, 1991.

[15] J. Siegel,CORBA 3: Fundamentals and Programming, John
Wiley and Sons, Inc, 2000, Second edition.

[16] M. Kirtland, Designing Component-Based Applications,
Microsoft Press, 1999.

[17] “Information technology – Programming languages – Ada,”
ISO/IEC Standard 8652:1995.

[18] Douglas E. Comer,Network Systems Design using Network
Processors, Prentice Hall, 2004.

[19] Philip Levis, Sam Madden, David Gay, Joseph Polastre,
Robert Szewczyk, Alec Woo, Eric Brewer, and David Culler,
“The emergence of networking abstractions and techniques
in tinyOS,” in First Symposium on networked system design
and implementation (NSDI04), San Francisco, California,
USA, 2004, pp. 1–14.

[20] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein,
and Wei Hong, “Tinydb: An acquisitional query processing
system for sensor networks,”Transactions on Database
Systems (TODS), Mar. 2005.


