Active Sensor Networks

Philip Levist, David Gay#, and David Cullert
{pal,culler}@cs.berkeley.edu, david.e.gay@intel.com

TEECS Department fIntel Research Berkeley
University of California, Berkeley 2150 Shattuck Avenue
Berkeley, CA 94720 Berkeley, CA 94703
ABSTRACT ing its simple VM into an architecture for building appli-

We propose using application specific virtual machinescation specific virtual machines (ASVMs). Our experi-
(ASVMs) to reprogram deployed wireless sensor networlfd1ces showed that Meis harsh limitations and complex
ASVMs provide a way for a user to define an appIication-'”_Str“Ct'O” set precluded _supportmg higher level program-
specific boundary between virtual code and the VM enMing. By carefully relaxing some of these restrictions
gine. This allows programs to be very concise (tens tfnd aIIowm'g a user tp customize both the instruction set
hundreds of bytes), making program installation fast and®"d €xecution triggering events, ASVMs can support dy-
inexpensive. Additionally, concise programs interpretN@mically reprogramming for a wide range of application
few instructions, imposing very little interpretation over- @0mains.. _ .

head. We evaluate ASVMs against current proposals for ntroducing lightweight scripting to a network makes
network programming runtimes and show that ASVMs't easy to process dgta at, or very clqse.to, Its source.
are more energy efficient by as much as 20%. We aIth'S processing can improve network Ilfetlm'e. by reduc-
evaluate ASVMs against hand built TinyOS applications"d Network traffic, and can improve scalability by per-
and show that while interpretation imposes a significanf®"Ming local operations locally. Similar approaches have
execution overhead, the low duty cycles of realistic ap_appeared before in other domains. Active disks proposed

plications make the actual cost effectively unmeasurable?tShing computation close to storage as a way to deal
with bandwidth limitations|[L], active networks argued

for introducing in-network processing to the Internet to

1. INTRODUCTION aid the deployment of new network protocdls|[27], and

Wireless sensor networks have limited resources andctive services suggested processing at IP end ppints [2].
tight energy budgets. These constraints make in-networkollowing this nomenclature, we name the process of in-
processing a prerequisite for scalable and long-lived aptroducing dynamic computation into a sensor network
plications. However, as sensor networks are embeddegktive sensor networkingdf the prior efforts, active net-
in uncontrolled environments, a user often does not knowyorking has the most similarity, but the differing goals
exactly what the sensor data will look like, and so mustand constraints of the Internet and sensor networks lead
be able to reprogram sensor network nodes after deployto very different solutions. We defer a detailed compari-
ment. Proposals for domain specific languages — stillson of the two until Section] 6.
an area of open investigation| [5, [7,] 19, 21] 23, 28] — Pushing the boundary toward higher level operations
present possible programming models for writing theseallows application level programs to achieve very high
programs. TinySQL queries, for example, declare howcode density, which reduces RAM requirements, inter-
nodes should aggregate data as it flows to the root of @retation overhead, and propagation cost. However, a
collection tree. higher boundary can sacrifice flexibility: in the most ex-

This wide range of programming abstractions has ledreme case, an ASVM has a single bytecode, “run pro-
to a similarly wide range of supporting runtimes, ranginggram.” Rather than answer the question of where the
from in-network query processofs [19] to native thread li- boundary should lie — a question whose answer depends
braries [28] to on-node script interpretelr$ [5]. However, on the application domain — ASVMs provide flexibility
each is a vertically integrated solution, making them allto an application developer, who can pick the right level
mutually incompatible with each other. Additionally, they of abstraction based on the particulars of a deployment.
all make implementation assumptions or simplifications Generally, however, we have found that very dense
that lead to unnecessary inefficiencies. bytecodes do not sacrifice flexibility, because ASVMs

Rather than propose a new programming approach tare customized for the domain of interest. RegionsVM,
in-network processing, in this paper we propose an archipresented in Sectidn 4, is an ASVM designed for ve-
tecture forimplementinga programming model’s under- hicle tracking with extensions for regions based opera-

lying runtime. We extend our prior work on the Matir- tions [28]; typical vehicle tracking programs are on the
tual machine (a tiny bytecode interpretér)|[15], generaliz-

order of seventy bytes long, 1/200th the size of the origi-ized interface has many copies of the interface, distin-
nally proposed regions implementation. A second ASVMguished by a parameter value (essentially, an array of the
we have built, QueryVM, supports an SQL interface to ainterface). Parameterized interfaces support runtime dis-
sensor network at 5-20% lower energy usage than thpatch between a set of components. For example, the
TinyDB system([19], and also allows adding new aggre-ASVM scheduler uses a parameterized interface to issue
gation functions dynamically. instructions: each instruction is an instance of the inter-

This paper has two contributions. First, it shows aface, and the scheduler dispatches on the opcode value.
way to introduce a flexible boundary between dynamic TinyOS'’s event-driven concurrency model does not al-
and static sensor network code, enabling active sensdow blocking operations. Calls to long-lasting opera-
networking at a lower cost than prior approaches whiletions, such as sending a packet, are typically split-phase:
simultaneously gaining improvements in safety and exthe call to begin the operation returns immediately, and
pressiveness. Second, this paper presents solutions tioe called component signals an event to the caller on
several technical challenges faced by such an approachpmpletion. nesC programming binds these callbacks
which include extensible type support, concurrency constatically at compile time through nesC interfaces (in-
trol, and code propagation. Together, we believe thesstead of, e.g., using function pointers passed at run-time).
results suggest a general methodology for designing and
implementing runt_imes for in—ne_twork processing. 2.2 Mote Networks

In the next section, we describe background informa-
tion relevant to this work, including mote network re- AS motes need to be able to operate unattended for
source constraints, operating system structure, and tH@ONths to years, robustness and energy efficiency are
first version of Mak. From these observations, we de- their dominant system requirements. Hardware resources
rive three ways in which Métis insufficient, establish- '€ Very limited, to minimize energy consumption. Cur-
ing them as requirements for in-network processing runf€nt TinyOS motes have a 4-8MHz microcontroller, 4—
times to be effective. In Sectidn 3, we present ASVMs, 10kB of data RAM, 60-128kB of program flash memory,
outlining their structure and decomposition. In Secfipn 4and a radio with application-level data transmission rates
we evaluate ASVMs with a series of microbenchmarks Of 1-20kB/s.
and compare ASVM-based regions and TinySQL to their EN€rgy limitations force long term deployments to op-
original implementations. We survey related work in €rate at a very low utilization. Even though a mote has
Sectiorf b, discuss the implications of these results in SecZ€"Y limited resources, in many application domains some

tion[d, and conclude in Secti@h 7. of those resources are barely used. For example, in the
’ 2003 Great Duck Island deployment [26], motes woke up
2. BACKGROUND from deep sleep every five or twenty minutes, warmed up

i) sensors for a second, and transmitted a single data packet
ASVMs run on the TinyOS operating system, whose,ith readings. During the warm-up second, the CPU was

programming model affects their structure and imple-gggentially idle. Allin all, motes were awake 0.1% of the

mentation. The general operating model of TinyOS Nettime. and when awake used 2% of their CPU cycles and
works (very low duty cycle) and network energy con- heqyork bandwidth. Although a mote usually does very
straints lead to both very limited node resources and Unjje when awake, there can also be flurries of activity, as

derutilization of those resources. &t a prior, mONo- qqes receive messages to forward from routing children
lithic \/M we developed for one particular apphcatmn or link estimation updates from neighbors.
domain. From these observations, we derive a set of

technical challenges for a runtime system to support ac: ,
tive sensor networking. 2.3 Matevl.0
. We designed and implemented the first version oféMat

2.1 TinyOS/nesC in 2002, based on TinyOS 0.6 (pre-nesC)|[15]. At that

TinyOS is a popular sensor network operating systemntime, the dominant hardware platform was the rene2 (the
designed for mote platforms. The nesC language [6]mica was just emerging), which had 1kB of RAM, 16kB
used to implement TinyOS and its applications, providesof program memory and a 10kbps software controlled
two basic abstractions: component based programmingadio. Mag has a predefined set of three events it exe-
and low overhead, event driven concurrency. cutes in response to. RAM constraints limited the code

Componentgre the units of program composition. A for a particular event handler to 24 bytes long (a single
component has a set miterfacest usesand a set of in- packet). In order to support network protocol implemen-
terfaces ifprovides A programmer builds an application tations in this tiny amount of space, the VM had a com-
by connecting interface users to providers. An interfaceplex instruction set open to inventive assembly program-
can beparameterized A component with a parameter- ming but problematic as a compilation target.

2.4 Requirements VM Template ’

Maté’s hard virtual/native boundary prevents it from
being able to support a range of programming models. Capsule
In particular, it fails to meet three requirements: Store

Flexibility: The Ma€ VM has very concise programs, . Scheduler|{ ——
but is designed for a single application domain. To pro- capsules l I I l

vide support for in-network processing, a runtime must

be flexible enough to be customized to a wide range of

I
I

application domains. Supporting a range of application Concurrency Manager

domains requires two forms of customization: the exe- — Operations

cution primitives of the VM (its instruction set), and the

set of events it executes in response to. For example, Threads @@ @ """ @

data collection networks need to execute in response to &

request to forward a packet up a collection tree (for sup-

pression/aggregation), while a vehicle tracking network Figure 1: The ASVM architecture.

needs to execute in response to receiving a local broad-

cast from a neighbor. a protocol to send code updates for larger programs: we

present our solution to this problem in Secfion 3.4.

To provide useful systems support for a wide range of
programming models, a runtime must meet these three
requirements without imposing a large energy burden.

Concurrency: By introducing a lightweight threading
model on top of event-driven TinyOS, Maprovides a
greatly simplified programming interface while enabling
fine-grained parallelism. Limited resources and a con o : . :
strained application domain allowed Mé&b address the Flexibility requires a way to build customized VMs —

corresponding synchronization and atomicity issues b)? yM_generato_r —soaVvM can be deS|gped for an ap-
only having a single shared variable. This restrictionpl'c.atlon do.malr?. The next_ section descrlbgs our appli-
is not suitable for all VMs. However, forcing explicit cation specific virtual machine (ASVM) architecture, de-

synchronization primitives into programs increases theil"""gneoi to take this next step.
length and places the onus of correctness on the program-
mer, who may not be an expert on concurrency. Instead3. DESIGN

the r.untime should manage concurrency automatlically, Figure[] shows the ASVM functional decomposition.
running handlers rgce-free and deadlock-free while alngyms have three major abstractionsandlers oper-
lowing safe parallelism. ations and capsules Handlers are code routines that
Propagation: In Maté, handlers can explicitly forward runinresponse to system events, operations are the units
code with theforw andforwo instructions. As ev- of execution functionality, and capsules are the units of
ery handler could fit in a single packet, these instruc-code propagation. ASVMs have a threaded execution
tions were just a simple broadcast. One one hand, exnodel and a stack-based architecture.

plicit code forwarding allows user programs to control The components of an ASVM can be separated into
their propagation, introducing additional flexibility; on two classes: theemplate which every ASVM includes,

the other, it requires every program to include propagaandextensionsthe application-specific components that
tion algorithms, which can be hard to tune and easy talefine a particular ASVM. The template includes a sched-
write incorrectly. Maé’s propagation data showed how uler, concurrency manager, and capsule store. The sched-
a naive propagation policy can easily saturate a networkyler executes runnable threads in a FIFO round-robin
rendering it unresponsive and wasting energy. As not alfashion. The concurrency manager controls what threads
programming models can fit their programs in a singleare runnable, ensuring race-free and deadlock-free han-
packet, a runtime needs to be able to handle larger datdler execution. The capsule store manages code storage
images (e.g., between 20 and 512 bytes), and should prénd loading, propagating code capsules and notifying the
vide an efficient but rapid propagation service. ASVM when new code arrives.

Building an ASVM involves connecting handlers and

Our prior work on the Trickle[[17] algorithm deals operations to the template. Each handler is for a spe-
with one part of the propagation requirement, proposing P plate. P

a control algorithm to quickly yet efficiently detect when cific system event, such as receving a packet. Wh?”
; . tr}at event occurs, the handler triggers a thread to run its
code updates are needed. The propagation results in tha

work assumed code could fit in a single packet and jus ode. Generally, there is a one-to-one mapping between

broadcasts updates three times. This leaves the need fogpdler_s and threads, but the architecture does not re-
quire this to be the case. The concurrency manager uses

interface Bytecode { Operation | Width | Name | Operand Bits| Description
/* The instr parameter is necessary for primitives rand 1 rand 0 Random 16-bit number
with embedded operands (the op_erand is instr pushcé 1 pushc 6 Push a constant on stadk
- opcode). Context is the executing thread. */ 2jumps10 2 jumps 10 Conditional jump
command result_t execute(uint8_t instr, . .
MateContext* context); Table 1: Three example operations: rand is a func-
command uint8_t byteLength(); tion, pushc6 and 2jumps10 are primitives.

}

tives. The architecture defines a minimal set of standard
Figure 2: The nesC Bytecode interface, which all op- simple operand types as 16-bit values (integers and sen-
erations provide. sor readings); this is enough for defining many useful
language-independent functions.

a conservative, flow insensitive and context insensitive However, to be useful, communication functions need
" o more elaborate types. For example, tieast function,
program analysis to provide its guarantees.

The set of operations an ASVM supports defines itSwhich sends a local broadcast packet, needs to be able
. i P .) PP to send whatever data structures its calling language pro-
instruction set. Just as in Matinstructions that encap-

lat lit-oh TinvOS abstract id bl I(vides. The function takes a single parameter, the item
suiate spit-phase Tiny)s abstractions provide a blociq,, broadcast, which a program pushes onto the operand
ing interface, suspending the executing thread until the

split-phase call completes. Operations are defined by th{s?tack before invoking it. To support these kinds of func-
Bytecode nesC interface, shown in Fig[ife 2, which h ons, languages must provide serialization support for

a
heir . This all 's implementation
two commandsexecute andbyteLength . The for- their data types s allowscast 's implementatio

. to pop an operand off the stack and send a serialized
mer is how a thread issues instructions, while the latte pop P

lets the scheduler correctly control the program Counter?epresentatlon with the underlying Tiny@8ndMsg()

g . tommand. When another ASVM receives the packet, it
Currently, AS_V Ms suppo_rt three Ianguages. Tm.yscr'pt’converts the serialized network representation back into
motlle, and TinySQL, which we present in Secti¢ng 4'3a VM representation
and4.4. '

There are two kinds of operationgrimitives which 3.2 Scheduler: Execution

are language specific, afghctions which are language
independent. The distinction between primitives and funcﬁ-I
tions is an important part of providing flexibility. An
ASVM supports a particular language by including the
primitives it compiles to, while a user tailors an ASVM
to a particular application domain by including appro-
priate functions and handlers. For functions to work in

The core of an ASVM is a simple FIFO thread sched-
er. This scheduler maintains a run queue, and inter-
leaves execution at a very fine granularity (a few oper-
ations). The scheduler executes a thread by fetching its
next bytecode from the capsule store and dispatching to
the corresponding operation component through a nesC

. parameterized interface. The parameter is an 8-bit un-
any ASVM, and correspondingly any language, ASVI\/lssigned integer: an ASVM can support up to 256 dis-

need a minimal common data model. Additionally, SOMEinct operations at its top-level dispatch. As the sched-

functions (e.g., communication) should be able 1o SUPYler issues instructions through nesC interfaces, their se-

{)hort Iangu?_%e spgmﬁc data tz_pes wnf:jogt lgozv'ngg’vra[lection and implementation is completely independent of
Ey aré. These ISSues are discussed in egtign 3.1. e template and the top level instruction decode over-
contrast, primitives can assume the presence of data YPS.ad is constant

and can have embedded operands. For example, CON"primitives can have embedded operands, which can

ditional jumps and pushing a constant onto the Operan%ause them to take up additional opcode values. For ex-
stack are primitives, while sending a packet is a function.

. . mple, thepushc6 primitive, which pushes a 6-bit con-
The rest of this section presents the ASVM data mOdeEtant onto the operand stack, has six bits of embedded

and the three core components of the template (sche yperand and uses 64 opcode slots. Some primitives, such
uler, concurrency manager, and capsule store). It con-

. o .~~7as jump instructions, need embedded operands longer
;lr%dg?;\r':’:;?nagn example of building an ASVM for region than 8 bits. Primitives can therefore be more than one

byte wide.

When the ASVM toolchain generates an instruction
3.1 Data Model set, it has to know how many bits of embedded operand
An ASVM has a stack architecture. Each thread hasan operation has, if any. Similarly, when the toolchain’s
an operand stack for passing data between operationassembler transforms compiled assembly programs into
The template does not provide any program data storASVM-specific opcodes, it has to know how wide in-
age beyond the operand stack, as such facilities are larstructions are. All operations follow this naming con-

guage specific, and correspondingly defined by primi-vention:

Hear newer version, status,

[width]<name>[operand] or fragment packet

Request timeout

Width and operand are both numbers, while name is a
string. Width denotes how many bytes wide the opera-
tion is (this corresponds to thyteWidth command of
the Bytecode interface), while operand is how many bits Receive complete Hear older version or
of embedded operand the operation has. If an operation e statws for current
does not have a width field, it defaults to 1; if it does not _ _ , _
have an operand field, it defaults to zero. T4Ble 1 show&19ure 3: ASVM capsule propagation state machine.
three example operations.

Beyond language independence, the function/primitive When a handler event occurs, the handler’s implemen-
distinction also determines which operations can be calld@tion submits a run request to the concurrency manager.
indirectly. Some languages have first class functions of he concurrency manager only allows a handler to run
function pointers: aprogram must be able to invoke themf it can eXClUSively access all of the shared resources
dynamically, rather than just statically through an instruct needs. The concurrency manager enforces two-phase
tion. To Support this functiona”ty' the scheduler main- IOCking: when it starts executing, the handler’s thread has
tains a function identifier to function mapping. This al- to hold all of the resources it may need, but can release
lows functions to be invoked through identifiers that havethem as it executes. When a handler completes (executes
been stored in variables. For example, when the motlidhe halt operation), its thread releases all of the held
language calls a function, it pushes a function ID onto the'esources. Releases during execution are explicit opera-
Operand stack and issues timeall instruction, which tions within a program. If a thread accesses a resource it
creates a call stack frame and invokes the function througfpes not hold (e.g., itincorrectly released it) the VM trig-

this level of indirection. gers an error. Two phase locking precludes deadlocks, so
) handlers run both race free and deadlock free.
3.3 Concurrency Manager: Parallelism When new code arrives, a handler may have variables

Handlers run in response to system events, and th# an inconsistent state. Waiting for every handler to
scheduler allows multiple handler threads to run concurcomplete before installing a new capsule is not feasible,
rently. In languages with shared variables, this can eas2s the update may, for example, be to fix an infinite loop
||y lead to race ConditionS, which are very hard to di- bUg Therefore, when new code arrives, the concurrency
agnose and detect in embedded devices. The commdRanager reboots the ASVM, resetting all variables.
solution to provide race free execution is explicit syn- The implicit assumption in this synchronization model
chronization written by the programmer. However, ex-is thathandlers are short running routines that do not hold
plicit synchronization operations increase program sizento resources for very long. As sensor network nodes
and complexity: the former costs energy and RAM, thetypically have very low utilization, this is generally the
latter increases the chances that, after a month of deplogase. However, a handler that uses an infinite loop with a
ment, a scientist discovers that all of the collected data i§all tosleep() , for example, can block all other han-
invalid and cannot be trusted. One common case wherglers indefinitely. Programming models and languages
ASVMs need parallelism is network traffic, due the lim- that prefer this approach can use explicit synchroniza-
ited RAM available for queuing. One handler blocking tion, as described above.
on a message send should not prevent handling message .
receptions, as their presence on the shared wireless cha%=4 Capsule Store: Propagation
nel might be the reason for the delay. Field experience with current sensor networks has shown

The concurrency manager of the ASVM template sup-that requiring physical contact can be a cause of many
ports race free execution through implicit synchroniza-node failures [25]; network programming is critical. Thus,
tion based on a handler’s operations. An operation comASVMs must provide reliable code propagation. As men-
ponent can register with the concurrency manager (ationed earlier (Sectidn 2.4), Meis explicit code forward-
compile time, through nesC wiring) to note that it ac- ing mechanism is problematic. As demonstrated in our
cesses a shared resource. When the ASVM installs a nework on Trickle [17], the cost of propagation is very
capsule, the concurrency manager runs a conservativlgw compared to the accompanying control traffic, so
context-insensitive and flow-insensitive analysis to deterselective dissemination enables few energy gains. The
mine which shared resources each handler accesses. THSVM template’s capsule store therefore follows a pol-
registration with the concurrency manager is entirely op-cy of propagating new code to every node. Rather than
tional. If a language prefers explicit synchronization, selective propagation, ASVMs use a policy of selective
then its operations can not declare shared resources, arsecution: everyone has the code, but only some nodes
the concurrency manager will not limit parallelism. execute it.

Trickle is a suppression algorithm for detecting when

<VM NAME=

"KNearRegions" DIR="apps/RegionsVM">

nodes need code updates. The algorithm dynamicallyLANGUAGE NAME="tinyscript">

scales its suppression intervals to rapidly detect inconsiszz ncrion

tencies but sends few packets when the network is COn<FUNCTION

sistent. Trickle does not define how code itself propa-ziﬂmglgm

gates, as the protocol greatly depends on the size of therUNCTION

data item. Deluge, for example, transfers entire TinyOSZESHglgm

binaries, and so uses a cluster formation algorithm toFUNCTION
quickly propagate large amounts of data|[11]. In theiﬂmglgm

Maté virtual machine, with its single packet programs, <FUNCTION

NAME="send">
NAME="mag">
NAME="cast">

NAME="id">
NAME="sleep">
NAME="KNearCreate">
NAME="KNearGetVar">
NAME="KNearPutVar">
NAME="KNearReduceAdd">
NAME="KNearReduceMaxID">
NAME="locx">
NAME="locy">

propagation was just a simple local broadcast. <FUNCTION
ASVM programs are between these two extremes. ASHANDLER NAME="Boot">

they are on the order of one to twenty packets long, Del-

uge is too heavy-weight a protocol, and simple broad-—. . - - i

casts are not sufficient. To propagate code, the ASVI\/f:.Igure 4 _M|n|mal de;crlpnqn file fo_r the Re-

capsule store maintains three netwarikkles (indepen- gionsVM. Figure[] contains scripts for this ASVM.

dent instances of the Trickle algorithm): . _ . .
ming model of a single execution context, only includes

one, which runs when the VM reboots. From this file,
the toolchain generates TinyOS source code implement-
ing the ASVM, and the Java classes its assembler uses to
map assembly to ASVM opcodes.

e \ersion packets which contain the 32-bit version
numbers of all installed capsules,

e Capsule status packetswhich describe what frag-
ments a mote needs (essentially, a bitmask), and

3.6 Active Sensor Networking

) _ o In order to support in-network processing, ASVMs must

An ASVM can be in one of three states._mamtam (X-pe capable of operating on top of a range of single-hop
changing version packets), request (sending capsule stgnqg myiti-hop protocols. Currently, the ASVM libraries

tus packets), or respond (sending fragments). Nodes stagf,,nort four concrete networking abstractions through

in the maintain state. Figufé 3 shows the state transitiofnctions and handlers: single hop broadcasts, any-to-

diagram. The transitions prefer requesting over respondsne routing, aggregated collection routing, and abstract
ing; a node will defer forwarding capsules until it thinks regions [28]. Based on our experiences writing library

itis completely up to date. ASVM components for these protocols — 80 to 180 nesC

Each type of packet (version, capsule status, and caRsiatements — including additional ones as stable imple-
sule fragment) is a separate network trickle. For examy,antations emerge should be simple and painless.
ple, a capsule fragment transmission can suppress other

fragment transmissions, but not version packets. This
allows meta-data and data exchanges to occur concuﬂ' EVALUATION
rently. Trickling fragments means that code propagates We evaluate whether ASVMs efficiently satisfy the re-
in a slow and controlled fashion, instead of as quickly asquirements presented in Sectign 2: concurrency, propa-
possible. This is unlikely to significantly disrupt any ex- gation, and flexibility. We first evaluate the three require-
isting traffic, and prevents network overload. We show inments through examples and microbenchmarks, then eval-
Sectior] 4.2 that because ASVM programs are small theyiate overall application level efficiency in comparison to
propagate rapidly across large multi-hop networks. alternative approaches.
o In our microbenchmarks, cycle counts are from a mica

3.5 Building an ASVM node, which has a 4MHz 8-bit microcontroller, the AT-

Building an ASVM and scripting environment requires Megal03L; some members of the mica family have a
specifying three things: a language, functions, and hansimilar MCU at a faster clock rate (8MHz). Words are
dlers. Figur€ 4 shows the description file for RegionsVM, 16 bits and a memory access takes two cycles: as itis an
an ASVM that supports programming with regions|[28]. 8-bit architecture, moving a word (or pointer) between
We evaluate RegionsVM versus a native regions implememory and registers takes 4 clock cycles.
mentation in Sectign 4.2. The final HANDLER line spec-
ifies that this ASVM executes in response to only one4'1 Concurrency
event, when the ASVM boots (or reboots). ASVMs can We measured the overhead of ASVM concurrency con-
include multiple handlers, which usually leads to multi- trol, using the cycle counter of a mica mote. Table 2
ple threads; RegionsVM, following the regions program-summarizes the results. All values are averaged over 50

e Capsule fragments which are pieces of a capsule.

Operation | Cycles [Time (us) |

Lock 32 8 buffer packet;
Unlock 39 10
Run 1077 269 bclear(packet); bpush3 3
Analysis | 15158 3790) bclear
packet[0] = light(); light
. . pushcé 0
Table 2: Synchronization Overhead. Lock and un- bpush3 3
lock are acquiring or releasing a shared resource. bwrite
. . .. send(packet); bpush3 3
Run is moving a thread to the run queue, obtaining send
all of its resources. Analysis is a full handler analysis.
(a) TinyScript (b) ASVM Bytecodes
[[Mean | Std. Dev. | Worst |
[Mote Retasking [208s| 74s | 858s | Figure 5: TinyScript function invocation on a sim-
[Network Retasking [3955 | 104s | 858s | ple sense and send loop. The operand stack passes
Vector Packets Sent 1.0 11 13 t to f ti In thi le. th int
Stalus Packetls Sent 1 3.2 57 19 parameters to functions. In this example, the script-
Fragment Packets Sert_3.0 25 22 ing environment has mapped the variable “packet”
TotalPacketsSent | 7.3 | 3.6 30 to buffer three. The compiled program is nine bytes

Table 3: Propagation data. Mote retasking is across ON9-

all motes in all experiments. Network retasking is the
retasking times in all the experiments, based on the
time for the last mote to reprogram. The Packets Sent
are all on a per-mote basis.

after each test to restore the trickle timers to their stable
values (maximums).
Table[3 summarizes the results. On the average, the

.network reprogrammed in forty seconds, and the worst
samples. These measurements were on an ASVM wnlé1 brog Y

. se was eighty-five seconds. To achieve this rate, each
24 shared resources and a 128 byte handler. Logklng ar}ﬁ%de, on the average, transmitted seven packets, a total of
unlocking resources take on the order of a few microsec;

.) five hundred transmissions for a seventy node network.
onds, while a full program analysis for shared reSOUrCeryq worst case node transmitted thirty packets. Check-

usage takes under a millisecond, approximately the eni'ng the traces, we found this mote was the last one to
ergy cost of transmitting four bits. !

status packets, repeatedly telling nodes around it that it
"eeded new code, but not receiving it. With the param-
eters we used, a node in a stable network sends at most

4.2 Propagation three packets per hour.
To evaluate the effect ASVM code conciseness has on

To evaluate code propagation, we deployed an ASV'v'propagation efficiency, we compare the retasking cost of

on a 71 mote testbed in Soda Hall on the UC Berke'the native implementation proposed for regions versus

ley campus. The network topology was approxmatelythe cost of retasking a system with RegionsVM. In the

e?ght hops across, with four hops being the average nOdPegions proposal, users write short nesC programs for a
distance. We used the standard ASVM propagation paéingle, synchronous “fiber” that compile to a TinyOS bi-

rameterﬂ We injected a one hundred byte (four frag- nary. Reprogramming the network involves propagating

ment) handler into a smglg nOQe overa W|_red link. Vvethis binary into the network. As regions compiles to na-
repeated the experiment fifty times, resetting the nodeﬁve TinyOS code, it has all of the safety issues of not

!Status and version packets have aange of one second to having a protection boundary.
twenty minutes, and a redundancy constant of 2. Fragments use Abstract regions is designed to run in TOSSIM, a sim-

Trickle for suppression, but operate with a fixed window size . - . P)
of one second repeating twice, and have a redundancy constaffat0" for TinyOS [16]. Several assumptions in its pro

agement, an ASVM can prevent many race conditio
bugs while keeping programs short and simple.

of 3. The request timeout was five seconds. tocols — such as available bandwidth — prevent it from
running on motes, and therefore precluded us from mea-

l [Native | RegionsVM] suring energy costs empirically. However, by modifying
gg?:é:':@;" LS a few configuration constants the two implementations
Transmitted Program | 19kB 718 share, we were able to compile them and measure RAM

utilization and code size. Tadlé 4 shows the results. The

Table 4: Space utilization of native and RegionsVM fiber's stack accounts for 512 bytes of the native runtime
regions implementations (bytes). RAM overhead.

. . . settimer0(500); /I Epoch is 50s
An ASVM doubles the size of the TinyOS image, but o, et update(100); // Update tree every 100s

this is a one time cost for a wide range of regions pro—// befine Timero hand!
. . . . erine limer anaier

grams. Reprogrammmg t'he native implementation re,, imero_handier() { /# ‘any' is the resuit type
quires sending a total of nineteen kilobytes: reprogram- // 'mhop_send’ sends a message up the tree
ming the RegionsVM implementation requires sending a e e Adanges 1o e next epoch
seventy byte ASVM handler, less than 0.5% of the size of / (snooped value may override this)
the binary. Additionally, handlers run in the sandboxed end(encedetvectorext.epoch(. id). paren0.
virtual environment, and benefit from all of its safety }
guarantees. If, after many retaskings, the user decides nercept and Snoop run when a node forwards
that the particular networking abstractions an ASVM pro-// or overhears a message. _
vides are not quite right, a new one can always be iy Factiomad eporh if were om0 orom:
stalled using binary reprogramming. any snoop_handler() heard(snoop_msg());

Deluge is the standard TinyOS system for disseminatiny peeracasy 1 0 oo eeept-msa0)
ing binary images into a network [11]. Reported ex- // decode the first 2 bytes of msg into an integer.
perimental results on a network similar to the one we Ve v = decode(msg, vector(2);
used in our propagation experiments state that dissemi- / 'snoop_epoch’ advances epoch if needed
nating 11kB takes 10,000 transmissions: disseminating snoop_epoch(v[o));
the 19kB of the native implementation would take ap-
proximately 18,000 transmissions. In contrast, from the . . _
data in Tabl¢ 3, a RegionsVM program takes fewer tharfigure 6: AS|mpIe da}ta collgctlon query inmotlle: re-
five hundred transmissions, less than 3% of the cost, whiléll node id, parent in routing tree and temperature
providing safety. The tradeoff is that programs are in-€very 50s.
terpreted bytecodes instead of native code, imposing a
CPU energy overhead. We evaluate this cost in Secsupport incremental changes to running programs.

tions[4.5-4.6, using microbenchmarks and an application

level comparison with TinyDB. 4.4 Flexibility: Applications
o We have built two sample ASVMs, RegionsVM and
4.3 Flexibility: Languages QueryVM. RegionsVM, designed for vehicle tracking,

ASVMs currently support three languages, TinyScript, prese_nts the apstract regions programming abstraction. of
motlle and TinySQL queries. We discuss TinySQL in MPI-like re_dugtlons (_)vershared ftuple spaces. Users write
Sectior] 44, when presenting QueryVM. programs in TmyScrlpt, and_ Reg|_0nsVM |nclude§ ASVM

TinyScript is a bare-bones language that provides minfunptlons for the basic regions library; we obtained the
imalist data abstractions and control structures. It is 4€9ions source code from its authors. Figlfe 7 shows
BASIC-like imperative language with dynamic typing andr€gions pseudocode proposed by Welsh at al. [28] next
a simple data buffer type. TinyScript does not have dy-f‘o actual TinyScript codg that is fuqctlonally identical (it
namic allocation, simplifying concurrency resource anal-invokes all of the same I|brary_funct_|ons). The nesC com-
ysis. The resources accessed by a handler are the uni®@nents that present the regions library as ASVM func-
of all resources accessed by its operations. TinyScriptions are approximately 400 lines of nesC code.
has a one to one mapping between handlers and capsulesQueryVM is designed for periodic data collection us-
Figure[% contains sample TinyScript code and the correl"d the aggregated collection routing abstraction men-
sponding assembly it compiles to. tioned in Sect_lo@G. QueryVM p_rowdes a TinySQL

Motlle (MOTe Language for Little Extensions) is a Programming interface, S|m_|lar to TinyDB, presenting a
dynamically-typed, Scheme-inspired language with a C_sensor_network asa streaming daFabase. T.|nySQL’s main
like syntax. Figurg}p shows an example of heavily com-€xtension to SQL is a ‘sample period’ at which the query
mented mottle code. The main practical difference withiS repeated. TinySQL supports both simple data collec-
TinyScript is a much richer data model: motlle supportstion and aggregate queries such as
vector;, I_is_ts, strings and fir;t—class func_tions. This al- SELECT AVG(temperature) INTERVAL 50s
lows significantly more complicated algorithms to be ex-
pressed within the ASVM, but the price is that accurateto measure the average temperature of the network. The
data analysis is no longer feasible on a mote. To prelatter allow in-network processing to reduce the amount
serve safety, motlle serializes thread execution by reportef traffic sent, by aggregating as nodes route data [20].
ing to the concurrency manager that all handlers access In our implementation, TinySQL compiles to motlle
the same shared resource. Motlle code is transmitted inode for the handlers that the aggregation collection tree
a single capsule which contains all handlers; it does nolibrary provides. This has the nice property that, in ad-

location = get _location();

/* Get 8 nearest neighbors */ Il Create nearest neighbor region
region = k _nearest _region _create(8); KNearCreate();
while(true) { for i = 1 until O
reading = get _sensor _reading(); reading = int(mag());
[* Store local data as shared variables */ Il Store local data as shared variables
region.putvar(reading _key, reading); KNearPutVar(0, reading);
region.putvar(reg x_key, reading * location.x); KNearPutVar(1, reading * LocX());
region.putvar(reg _y_key, reading * location.y); KNearPutVar(2, reading * LocY());
if (reading > threshold) { if (reading > threshold) then
/* ID of the node with the max value */ I ID of the node with the max value
max.id = region.reduce(OP _MAXID, reading _key); max.id = KNearReduceMaxID(0);
/* If | am the leader node... */ I If | am the leader node
if (max .id == my .d) { if (max -d = my _id) then
sum = region.reduce(OP _SUM, reading _key); sum = KNearReduceAdd(0);
sumx = region.reduce(OP _SUM, reg x_key); sumx = KNearReduceAdd(1);
sum.y = region.reduce(OP _SUM, reg .y key); sumy = KNearReduceAdd(2);
centroid.x = sum x / sum; buffer[0] = sum x / sum;
centroidy = sum .y / sum; buffer[l] = sum .y / sum;
send _to _basestation(centroid); send(buffer);
} end if
} end if
sleep(periodic _delay); sleep(periodic _delay);
next i
(a) Regions Pseudocode (b) TinyScript Code

Figure 7: Regions Pseudocode and Corresponding TinyScript. The pseudocode is from “Programming Sensor
Networks Using Abstract Regions.” The TinyScript program on the right compiles to 71 bytes of binary code.

-, . e None | Operation| Script
dition to TinySQL, QueryVM also supports writing new feration 1160 T 164 622

attributes and network aggregates in motlle. In contrast, Sort Time 0.4 6.2

TinyDB is limited to the set of attributes and aggregates o S
compiled into its binary. Table 5: Execution time of three scripts, in millisec-

onds. None is the version that did not sort, operation

4.5 Efficiency: Microbenchmarks is the version that used an operation, while script is
the version that sorted in script code.

Our first evaluation of ASVM efficiency is a series of
microbenchmarks of the scheduler. We compare ASVMs
to Mat, a hand-tuned and monolithic implementation. ets, and its ASVM scripting overhead is approximately

Following the methodology we used in Mgtl5], we 600 CPU cycles, the energy overhead is less than 0.03%.
measured the bytecode interpretation overhead an ASVMowever, a cost of 400 cycles per bytecode means that
imposes by writing a tight loop and counting how many implementing complex mathematical codes in an ASVM
times it ran in five seconds on a mica mote. The loopis inefficient; if an application domain needs significant
accessed a shared variable (which involved lock checkprocessing, it should include appropriate operations.
through the concurrency manager). An ASVM can is- To obtain some insight into the tradeoff between in-
sue just under ten thousand instructions per second ocdluding functions and writing operations in script code,
a 4MHz mica, i.e., roughly 400 cycles per instruction. we wrote three scripts. The first script is a loop that fills
The ASVM decomposition imposes a 6% overhead oveman array with sensor readings. The second script fills the
a similar loop in Mag, in exchange for handler and in- array with sensor readings and sorts the array with an
struction set flexibility as well as race-free, deadlock-freeoperation pufsorta , which is an insertion sort). The
parallelism. third script also insertion sorts the array, but does so in

We have not optimized the interpreter for CPU effi- TinyScript, rather than using an operation. To measure
ciency. The fact that high-level operations dominate prothe execution time of each script, we placed it in a 5000
gram execution [15], combined with the fact that CPUsiteration loop and sent a UART packet at script start and
in sensor networks are generally idle, makes this overend. Tabld b shows the results. Sorting the array with
head acceptable, although decreasing it with future worlscript code takes 115 times as long as sorting with an
is of course desirable. For example, a KNearReduc@peration, and dominates script execution time. Inter-
function in the RegionsVM sends just under forty pack- pretation is inefficient, but pushing common and expen-

/I Initialise the operator Size (bytes) Energy (mW) Yield

expdecay_make = fn (bits) vector(bits, 0); Query TinyDB VM || TinyDB VM || TinyDB VM
/I Update the operator (s is result from make) Simple 93 105 5.6 45 73% 74%
expdecay_get = fn (s, val)) Conditional 124 167 42 40 65% 79%

/I Update and return the average (s[0] is BITS) SpatialAvg 62 127 3.3 3.1 46% 55%

s[1] = s[1] - (s[1] >> s[0]) + (attr() >> s[O]);

Table 7: Query size, power consumption and yield
in TinyDB and QueryVM. Yield is the percentage of

Figure 8: An exponentially decaying average opera-)
expected results received.

tor for TinySQL, in motlle.

[(Name [TinySQL l TinySQL query results abstract the notion of time into
Simple SELECT id,parent,temp INTERVAL 50s : .
Conditional | SELECT 1d. expdecay(humidity, 3) an epoch_ Epoch .numbers are a logical time scheme
_ WHERE parent > 0 INTERVAL 50s that are included in query results and help support ag-
SpatialAvg | SELECT AVG(temp) INTERVAL 50s gregation. QueryVM includes functions and handlers to

support multi-hop communication, epoch handling and
aggregation. QueryVM programs can use the same tree
based collection layer, MintRoute [29], that TinyDB uses.
QueryVM includes epoch-handling primitives to avoid
replicating epoch-handling logic in every program (see
sive operations into native code with functions minimizes“>29¢€ 1N Figur|6). Temporal or spatial (across nodes)

the amount of interpretation. Sectipn}4.7 shows that higveraging logic can readily be expressed in motlie, but
flexible boundary, combined with the very low duty cy- Including common aggregates in QueryVM reduces pro-

cle common to sensor networks, leads to interpretatiorgram size and increases faxecgt_lon efficiency. I
overhead being a negligible component of energy con- We evaluate QueryVM s efficiency by comparing 'FS
sumption for a wide range of applications. power c_iraw to the TinyDB system on the three queries
shown in Tablé 6. To reflect the power draw of a real
4.6 Efficiency: Application deployment, we enabled low-power listening in both im-

QueryVM is a motlle-based ASVM designed to sup- plementations. In low data rate networks — such as pe-
riodic data collection — low power listening can greatly

port the execution of TinySQL data collection quenes'improve network lifetime[[22, 26]. At this level of uti-

Our TinySQL compiler generates motlle code from queriqs

such as those shown in Table 6; the generated code is re@aﬂon, packet length becomes an important determi-

sponsible for timing, data collection message layout ancpant of energy consumption, so we matched the size of

how to process or aggregate data on each hop up the ro routing control packets between QueryVM and TinyDB.

ing tree. The code in Figulg 6 is essentially the same owever, TinyDB's query result packets are still approx-

as that generated for the Simple query. Users can writ('emately 2.0 bytes Ionger. than Q.ueryVM s. On mica2
; ' . . motes, this means that TinyDB will spend an extra 350
new attributes or operators for TinySQL using snippets .
. : .~ “for each packet received, and 6ZHor each packet sent.
of motlle code. For instance, Figurg¢ 8 shows two lines : ;
. . We ran the queries on a network of 40 mica2 motes
of motlle code to add an exponentially-decaying average

operator, which an example in Table 6 uses Spread across the ceiling of an office building. Motes
P ' P ' had the mts400 weather board from Crossbow Technolo-

gies. Environmental changes can dynamically alter ad-
hoc routing trees (e.g., choosing a 98% link over a 96%
link), changing the forwarding pattern and greatly affect-
ing energy consumption. These sorts of changes make
experimental repeatability and fair comparisons unfeasi-
ble. Therefore, we used a static, stable tree in our experi-
ments, to provide an even basis for comparison across the
implementations. We obtained this tree by running the
routing algorithm for a few hours, extracting the parent
sets, then explicitly setting node parents to this topology,
shown in Figurd 9. Experiments run on adaptive trees
were consistent with the results presented below.

We measured the power consumption of a mote with
a single child, physically close to the root of the multi-
Figure 9: Tree topology used in QueryVM/TinyDB hop network. Its power reflects a mote that overhears a
experiments. The square node is the tree root. lot of traffic but which sends relatively few messages (a

Table 6: The three queries used to evaluate data col-
lection implementations. TinyDB does not directly
support time-based aggregates such &xpdecay , so
in TinyDB we omit the aggregate.

N
I

-
w

ETinyDB
Synch

O Stagger
@QueryVM

ETinyDB
OnesC
EQueryVM

Power Draw (mW)
o
19} -

Simple Conditional SpatialAvg Simple Conditional ~SpatialAvg

Figure 10: Power consumption of TinyDB, Figure 11: Average power draw measurements in a
QueryVM, and nesC implementations. Synch is two node network. For the Conditional query, the
the nesC implementation when nodes start at the monitored node has parent = 0, so sends no packets.
same time. Stagger is when the nodes start times are The error bars are the standard deviation of the per-
staggered. interval samples.

common case). In each of the queries, a node sends a data energy consumption is the cost of query execution and
packet every 50 seconds, and the routing protocol sendsreporting. The extra cost of sending TinyDB's larger re-
route update packet every two epochs (100 seconds). Wault packets is negligible (.01mW extra average power
measured the average power draw of the instrumentedraw). We ran these experiments longer than the full net-
node over 16 intervals of 100 seconds, sampling at 10@vork ones: rather than 16 intervals of length 100 seconds
Hz (10,000 instantaneous samples). (25 minutes), we measured for 128 intervals (3.5 hours).
Table[T presents the results from these experiments. The results, presented in Figlird 11, show that QueryVM
For the three sample queries, QueryVM consumes 5%as a 5-20% energy performance improvement over TinyDB.
to 20% less energy than TinyDB. However, we do notEven though an ASVM based on reusable software com-
believe all of this improvement to be fundamental to theponents and a common template, rather than a hand-coded,
two approaches. The differences in yield mean that theertically integrated system, QueryVM imposes less of
measured mote is overhearing different numbers of mesan energy burden on a deployment. In practice though,
sages — this increases QueryVM's power draw. Con{power draw in a real network is dominated by network-
versely, having larger packets increases TinyDB's poweing costs — QueryVM's 0.25mW advantage in Figurg 11
draw — based on the 323 per-packet cost, we estimate would give at most 8% longer lifetime based on the
a cost of 0.2-0.5mW depending on the query and howower draws of Figurg 10.
well the measured mote hears more distant motes. To determine where QueryVM’s power goes, we com-
However, these are not the only factors at work, aspared it to four hand coded TinyOS programs. The first
shown by experiments with a native TinyOS implemen-program did not process a query: it just listened for mes-
tation of the three queries. We ran these native implesages and handled system timers. This allows us to dis-
mentations in two scenarios. In the first scenario, wetinguish the cost of executing a query from the underly-
booted all of the nodes at the same time, so their opering cost of the system. The other three were the nesC
ation was closely synchronized. In the second, we stagimplementations of the queries used for Figure 10. They
gered node boots over the fifty second sampling intervalallow us to distinguish the cost of executing a query itself
Figure[1 shows the power draw for these two scenariosrom the overhead an ASVM runtime imposes. The basic
alongside that of TinyDB and QueryVM. In the synchro- system cost was 0.76 mW. Figire 11 shows the compar-
nized case, yields for the native implementations variedson between QueryVM and a hand-coded nesC imple-
between 65% and 74%, in the staggered case, yields wergaentation of the query. The queries cost 0.28—-0.54 mW,
between 90% and 97%. As these results show, details afnd the cost of the ASVM is negligible.
the timing of transmissions have major effects on yield This negligible cost is not surprising: for instance, for
and power consumption. To separate these networkinghe conditional query, QueryVM executes 49 instructions
effects from basic system performance, Sedfiof 4.7 reper sample period, which will consume approximately

peats our experiments in a two-node network. 5ms of CPU time. Even on a mica2 node, whose CPU
ffici . . power draw is a whopping 33 mW due to an external os-
4.7 Efficiency: Interpretation cillator (other platforms draw 3-8 mW), this corresponds

In our two-node experiments, the measured mote exto an average power cost of 3\/. In the 40 node net-
ecutes the query and sends results, and the second materk, the cost of snooping on other node’s results will in-
is a passive base station. As the measured node does raykase power draw by another ;20. Finally, QueryVM
forward any packets or contend with other transmitterssends viral code maintenance messages every 100 min-

utes (in steady state), corresponding to an average powspr networks, performance — the general goainaire
draw of 1.6:W. whether it be bandwidth, or operations per second —
From the results in Tab[g 7, with a power consumptionis rarely a primary metric, as low duty cycles make re-
of 4.5mW, a pair of AA batteries (2700mAh, of which sources plentiful. Instead, robustness and energy effi-
approximately two thirds is usable by a mote) would lastciency are the important metrics.
for 50 days. By lowering the sample rate (every fifty ANTS, PLAN, and Smart Packets are example systems
seconds is a reasonably high rate) and other optimizathat bring active networking to the Internet. Although
tions, we believe that lifetimes of three months or moreall of them made networks dynamically programmable,
are readily achievable. Additionally, the energy cost ofeach system had different goals and research foci. ANTS
ASVM interpretation is a negligible portion of the whole focuses on deploying protocols in a network, PLANet
system energy budget. This suggests that ASVM-basedxplores dealing with security issues through language
active sensor networking can be a realistic option fordesign [[10) 9], and Smart Packets proposes active net-
long term, low-duty-cycle data collection deployments. working as a management tool [24]. ANTS uses Java,
while PLANet and Smart Packets use custom languages
5. RELATED WORK (PLAN and Sprocket, respectively). Based on an Inter-

The Ma virtual machine[TI5] forms the basis of the "€t communication and resource model, many of the de-
ASVM architecture. ASVMs address three of Mt SI9n decisions these systems made (e.g., using a JVM)

main limitations: flexibility, concurrency, and propaga- are unsurprisingly not well suited to mote networks. One

tion. SensorWare [5] is another proposal for program-d'sﬂn%u'smng charactgrlsuc in sensor neMork§ is their
ming nodes using an interpreter: it proposes using TC|ac of strong boundaries between communication, sens-

scripts. For the devices SensorWare is designed for _ing, and computation. Unlike in the Internet, where data

iPAQs with megabytes of RAM — the verbose program generation is mostly the province of end points, in sensor
etworks every node is both a router and a data source.

representation and on-node Tcl interpreter can be accep'?— itial deol) have d q
able overheads: on a mote, however, they are not. Initial mote ep oyment experiences ave emonstrate
the need for simple network programming models, at a

SOS is a sensor network operating system that sup-, X)
ports dynamic native code updates through a IoadabIQ'gher level of abstraction than per-node TinyOS code.

module systeri[8]. This allows small and incremental | "iS has led to avariety of proposals, including TinyDB's
binary updates, but requires levels of function call in- SQL queries/[19], diffusion's aggregation [12], regions

direction. SOS therefore sits between the extremes OMPI-Iike reductions|[28], or market based macroprogram-

TinyOS and ASVMs, where its propagation cost is lessTiNg’S Pricings[21]. Rather than define a programming
than TinyOS and greater than ASVMs, and its executio’°d€el; ASVMs provide a way to implement and build
overhead is greater than TinyOS but less than ASVMthe runtime underlying whichever model a user needs.
By using native code to achieve this middle ground, SOS
cannot provide all of the safety guarantees that an ASVM-* DISCUSSION AND FUTURE WORK
can. Still, the SOS approach suggests ways in which Sectiorf 4 showed that an ASVM is an effective way to
ASVMs could dynamically install new functions. efficiently provide a high-level programming abstraction
The Impala middleware system, like SOS, allows usergo users. It is by no means the only way, however. There
to dynamically install native code modules [18]. How- are two other obvious approaches: using a standard vir-
ever, unlike SOS, which allows modules to both call atual machine, such as Java, and sending very lightweight
kernel and invoke each other, Impala limits modules tonative programs.
the kernel interfaces. Like ASVMs, these interfaces are As a language, Java may be a suitable way to program
event driven, and bear a degree of similarity to &aiin- a sensor network, although we believe a very efficient
like ASVMs, however, Impala does not provide generalimplementation might require simplifying or removing
mechanisms to change its triggering events, as it is desome features, such as reflection. Java Card has taken
signed for a particular application domain, ZebralNet [13]such an approach, essentially designing an ASVM for
Customizable and extensible abstraction boundariessmart cards that supports a limited subset of Java and dif-
such as those ASVMs provide, have a long history in opferent program file formats. Although Java Card supports
erating systems research. Systems such as scheduler actisingle application domain, it does provide guidance on
vations [3] show that allowing applications to cooperatehow an ASVM could support a Java-like language.
with a runtime through rich boundaries can greatly im- Native code is another possible solution: instead of
prove application performance. Operating systems sucheing bytecode-based, programs could be native code
as exokernel[[14] and SPIN|[4] take a more aggressivestringing together a series of library calls. As sensor
approach, allowing users to write the interface and im-mote CPUs are usually idle, the benefit native code pro-
prove performance through increased control. In senvides — more efficient CPU utilization — is minimal,

Programming Layer for propagation efficiency. Separating the programming
SQL-like queries, data parallel operators, scripts layer and transmission layer, as QueryVM does, leads to
Expressivity, simplicity T .. .
greater program flexibility and more efficient execution.
Transmission Layer Regions combines the bottom two layers: its programs
Applicaticlnzr;f ii?:nc;fylc;/al\f/le?yytecodes are TinyOS images. Using the TinyOS concurrency model,
. rather than a virtual one, limits the native regions imple-
Execution Layer mentation to a single thread. Additionally, even though
Opﬁmi;aeﬁsocr;s""r”;fgu‘;ggerh;::ggrende:feh';r Sware its programs are only a few lines long — compiling to

seventy bytes in RegionsVM — compiling to a TinyOS
image makes its programs tens of kilobytes long, trading
off propagation efficiency and safety for execution effi-
ciency. Separating the transmission layer from the exe-
cution layer, as RegionsVM does, allows high-level ab-

unless a user wants to write complex mathematical codeStractions to minimize execution overhead and provides
In the ASVM model, these codes should be written inSafel-
nesC, and exposed to scripts as functions. Additionally,
native code poses many complexities and difficulties, whith CONCLUSION
greatly outweigh this minimal benefit, including safety, The constrained application domains of sensor networks
conciseness, and platform dependence. However, thmean that programs can be represented as short, high
SOS operating system suggests ways in which ASVMdevel scripts. These scripts control — within the proto-
could support dynamic addition of new functions. cols and abstractions a domain requires — when motes
ASVMs share the same high-level goal as active netgenerate data and what in-network processing they per-
working: dynamic control of in-network processing. The form. Vision papers and existing proposals for sensor
sort of processing proposed by systems such as ANT8etwork programming indicate that this approach will
and PLANEet, however, is very different than that which not the exception in these systems but the rule. Push-
we see in sensor nets. Although routing nodes in an adghg processing as close to the data sources as possible
tive Internet can process data, edge systems are still préransforms a sensor network into an active sensor net-
dominantly responsible for generating that data. Corrework. But, as sensor networks are so specialized, the ex-
spondingly, much of active networking focused on proto-act form active sensor networking takes is an open ques-
col deployment. In contrast, motes simultaneously playtion, a question that does not have a single answer.
the role of both a router and a data generator. Instead Ratherthan propose a particular active networking sys-
of providing a service to edge applications, active sensotem, useful in some circumstances and not in others, we
nodes are the application. have proposed using application specific virtual machines
Section[4.p showed how an ASVM — QueryVM — to easily make a sensor network active, and described
can simultaneously support both SQL-like queries andan architecture for building them. Two sample VMs,
motlle programs, compiling both to a shared instructionfor very different applications and programming models,
set. In addition to being more energy efficient than a sim-show the architecture to be flexible and efficient. This
ilar TinyDB system, QueryVM is more flexible. Simi- efficiency stems from the flexibility of the virtual/native
larly, RegionsVM has several benefits — code size, conboundary, which allows programs to be very concise.
currency, and safety — over the native regions imple-Conciseness reduces interpretation overhead as well as
mentation. the cost of installing new programs. “Programming motes
We believe these advantages are a direct result of hous hard” is a common claim in the sensor network com-
ASVMs decompose programming into three distinct lay-munity; perhaps we have just been programming to the
ers, shown in Figurg 12. The highest layer is the code isvrong interface?
a user writes (e.g., TinyScript, SQL). The middle layer is
the active networks representation the program takes adcknowledgements
it propagates (ASVM bytecodes). The final layer is the s work was supported, in part, by the Defense Depart-
representation the program takes when it executes on dent Advanced Research Projects Agency (grants F33615-
mote (an ASVM). _ 01-C-1895 and N6601-99-2-8913), the National Science
‘TinyDB combines the top two layers: its programs aregqndation (grants No. 0122599 and NSF 11S-033017),
binary encodings of an SQL query. This forces a motecjifornia MICRO program, and Intel Corporation. Re-

to parse and interpret the query, and determine what aGseaych infrastructure was provided by the National Sci-
tions to take on all of the different events coming into the o ,ce Foundation (grant EIA-9802069).

system. It trades off flexibility and execution efficiency

Figure 12: A layered decomposition of in-situ repro-
gramming.

8.
(1]

2

[3

[4

5

[6

[7

(8]

[9

[10]

(1]

[12]

[13]

[14]

[15]

REFERENCES

A. Acharya, M. Uysal, and J. Saltz. Active disks: programming
model, algorithms and evaluation. ASPLOS-VIII: Proceedings
of the eighth international conference on Architectural support
for programming languages and operating systepagies

81-91. ACM Press, 1998.

E. Amir, S. McCanne, and R. Katz. An active service framework
and its application to real-time multimedia transcoding. In
SIGCOMM '98: Proceedings of the ACM SIGCOMM '98
conference on Applications, technologies, architectures, and
protocols for computer communicatiopages 178-189. ACM
Press, 1998.

T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Scheduler
activations: Effective kernel support for the user-level
management of parallelislPACM Transactions on Computer
Systemsl0(1):53-79, February 1992.

B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker,

M. Fiuczynski, C. Chambers, and S. Eggers. Extensibility, safety
and performance in the SPIN operating systenProceedings

of the 15th ACM Symposium on Operating Systems Principles
(SOSP-15)1995.

A. Boulis, C.-C. Han, and M. B. Srivastava. Design and
implementation of a framework for efficient and programmable
sensor networks. IRroceedings of the First International
Conference on Mobile Systems, Applications, and Services
(MobiSys 2003)2003.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and

D. Culler. The nesC language: A holistic approach to networked
embedded systems. 8iIGPLAN Conference on Programming
Language Design and Implementation (PLDI'03)ne 2003.

L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin,
E. Osterweil, and T. Schoellhammer. A system for simulation,
emulation, and deployment of heterogeneous sensor networks. |
SenSys '04: Proceedings of the 2nd international conference on
Embedded networked sensor systgmages 201-213. ACM
Press, 2004.

C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. A
dynamic operating system for sensor nodesVbbiSYS '05:
Proceedings of the 3rd international conference on Mobile
systems, applications, and servic2605.

M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles.
Plan: A packet language for active networksPimceedings of

the International Conference on Functional Programming
(ICFP), 1998.

M. Hicks, J. T. Moore, D. S. Alexander, C. A. Gunter, and

S. Nettles. Planet: An active internetwork.Pmoceedings of

IEEE INFOCOM 1999.

J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In
Proceedings of the Second International Conferences on
Embedded Network Sensor Systems (SenB)33.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm for
sensor networks. IRroceedings of the International Conference
on Mobile Computing and Networkingug. 2000.

P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and

D. Rubenstein. Energy-efficient computing for wildlife tracking:
Design tradeoffs and early experiences with zebranet. In
Proceedings of the ACM Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS)
oct 2002.

M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Bfiog

R. Hunt, D. Mazéres, T. Pinckney, R. Grimm, J. Jannotti, and

K. Mackenzie. Application performance and flexibility on
Exokernel systems. IRroceedings of the 16th ACM Symposium
on Operating Systems Principles (SOSP ;90%tober 1997.

P. Levis and D. Culler. M&t a tiny virtual machine for sensor
networks. InProceedings of the ACM Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS Rct. 2002.

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

4

(25]

(26]

(27]

(28]

(29]

P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Simulating
large wireless sensor networks of tinyos moteRloceedings

of the First ACM Conference on Embedded Networked Sensor
Systems (SenSys 2003)03.

P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code maintenance and propagation
in wireless sensor networks. Rirst USENIX/ACM Symposium
on Network Systems Design and Implementation (NSDD4.

T. Liu and M. Martonosi. Impala: a middleware system for
managing autonomic, parallel sensor system&RoPP '03:
Proceedings of the ninth ACM SIGPLAN symposium on
Principles and practice of parallel programmingages

107-118. ACM Press, 2003.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tinydb: An acquisitional query processing system for sensor
networks.Transactions on Database Systems (TQR8D5.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks.
In Proceedings of the ACM Symposium on Operating System
Design and Implementation (OSDDec. 2002.

G. Mainland, L. Kang, S. Lahaie, D. Parkes, and M. Welsh.
Using virtual markets to program global behavior in sensor
networks. InProceedings of the 11th ACM SIGOPS European
WorkshopLeuven, Belgium, 2004.

J. Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networksPmceedings of the
Second ACM Conferences on Embedded Networked Sensor
Systems (SenSygp04.

K. Romer, C. Frank, P. J. Man, and C. Becker. Generic role
assignment for wireless sensor networksPtoceedings of the
11th ACM SIGOPS European Workshapuven, Belgium,

2004.

B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, R. D.
Rockwell, and C. Partridge. Smart packets: Applying active
networks to network managemeACM Transations on
Computer System2000.

C. Sharp, S. Shaffert, A. Woo, N. Sastry, C. Karlof, S. Sastry,
and D. Culler. Design and implementation of a sensor network
system for vehicle tracking and autonomous interception.
Proceedings of the Second European Workshop of Wireless
Sensor Networks (EWSN 2005), 2005.

R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. An
analysis of a large scale habitat monitoring application. In
Proceedings of the Second ACM Conference on Embedded
Networked Sensor Systems (SenSys 2000%.

D. Tennenhouse and D. Wetherall. Towards an active network
architecture. IrComputer Communication Review, 26(2996.

M. Welsh and G. Mainland. Programming sensor networks with
abstract regions. IRirst USENIX/ACM Symposium on Network
Systems Design and Implementation (NSROD4.

A. Woo, T. Tong, and D. Culler. Taming the underlying
challenges of reliable multihop routing in sensor networks. In
Proceedings of the first international conference on Embedded
networked sensor systenpaiges 14-27. ACM Press, 2003.

	Introduction
	Background
	TinyOS/nesC
	Mote Networks
	Maté v1.0
	Requirements

	Design
	Data Model
	Scheduler: Execution
	Concurrency Manager: Parallelism
	Capsule Store: Propagation
	Building an ASVM
	Active Sensor Networking

	Evaluation
	Concurrency
	Propagation
	Flexibility: Languages
	Flexibility: Applications
	Efficiency: Microbenchmarks
	Efficiency: Application
	Efficiency: Interpretation

	Related Work
	Discussion and Future Work
	Conclusion
	REFERENCES -3pt

