
Language Support for Regions

David Gay and Alex Aiken∗

EECS Department
University of California, Berkeley

{dgay,aiken}@cs.berkeley.edu

ABSTRACT
Region-based memory management systems structure mem-
ory by grouping objects in regions under program control.
Memory is reclaimed by deleting regions, freeing all objects
stored therein. Our compiler for C with regions, RC, pre-
vents unsafe region deletions by keeping a count of refer-
ences to each region. Using type annotations that make the
structure of a program’s regions more explicit, we reduce the
overhead of reference counting from a maximum of 27% to
a maximum of 11% on a suite of realistic benchmarks. We
generalise these annotations in a region type system whose
main novelty is the use of existentially quantified abstract
regions to represent pointers to objects whose region is par-
tially or totally unknown. A distribution of RC is available
at http://www.cs.berkeley.edu/~dgay/rc.tar.gz.

1. INTRODUCTION
In region-based memory management each allocated object

is placed in a program-specified region. Objects cannot be
freed individually; instead regions are deleted with all their
contained objects. Figure 1’s simple example builds a list
and its contents (the data field) in a single region, outputs
the list, then frees the region and therefore the list. The
sameregion type qualifier is discussed below.

Traditional region-based systems such as arenas [8] are
unsafe: deleting a region may leave dangling pointers that
are subsequently accessed. In this paper we present RC, a
dialect of C with regions that guarantees safety dynamically.
RC maintains for each region r a reference count of the
number of external pointers to objects in r, i.e., of pointers
not stored within r. Calls to deleteregion fail if this count
is not zero. Section 3 gives a short introduction to RC. RC

∗This work was supported in part by NASA Contract No.
NAG2-1210, NSF CCR-0085949, NSF infrastructure grant
ACI-9619020 and DARPA contract F30602-95-C-0136. The
information presented here does not necessarily reflect the
position or the policy of the Government and no official en-
dorsement should be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI ’01 Snowbird, Utah USA
Copyright 2001 ACM 0-89791-88-6/97/05 ..$5.00

struct rlist {

struct rlist *sameregion next;

struct finfo *sameregion data;

} *rl, *last = NULL;

region r = newregion();

while (...) { /* build list */

rl = ralloc(r, struct rlist);

rl->data = ralloc(r, struct finfo);

... /* fill in data */

rl->next = last; last = rl;

}

output_rlist(last);

deleteregion(r);

Figure 1: An example of region-based allocation.

compiles to C, so can be used with any C compiler on any
platform. While our results are presented in the context of
a C dialect, our techniques can be used to add support for
regions to other languages (Section 3).

We believe that region-based programming has several ad-
vantages over other memory management techniques. First,
it brings structure to memory management by grouping re-
lated objects, making programs clearer and easier to write
and to understand (especially when compared to using malloc
and free). Second, regions provide safety with good perfor-
mance: on our benchmarks, regions with reference counting
are from 7% slower to 58% faster than the same programs
using malloc/free or the Boehm-Weiser conservative garbage
collector, and the overhead of reference counting is at most
11% of execution time. Furthermore, Stoutamire [11] and
our earlier study of regions [6] show that regions can be
used to improve data locality by providing a mechanism for
programmers to specify which values should be colocated in
memory, as well as which values should be kept separated.

Our paper makes three contributions. First, RC is a re-
alistic proposal for adding language support for regions to
mainstream languages. We have used RC in large applica-
tions and found programming with regions both straightfor-
ward and productive.

Our second contribution, and the major change in RC over
our previous system C@ [6], is the addition of static infor-
mation in the form of three type annotations: sameregion,
traditional and parentptr. These annotations are based
on our observations of common programming patterns in
large region-based applications:

• A pointer declared sameregion is internal, i.e., it is

null or points to an object in the same region as the
pointer’s containing object. Sameregion pointers cap-
ture the natural organisation that places all elements
of a data structure in one region.

• A pointer declared traditional never points to an ob-
ject allocated in a region, e.g., it may be the address of
a local variable. The most important use of traditional
pointers is in integrating legacy code into region-based
applications.

• In RC, a region can be created as a subregion of an ex-
isting region. A region can only be deleted if it has no
remaining subregions. A pointer declared parentptr

is null or points upwards in the hierarchy of regions.

These type annotations both make the structure of an ap-
plication’s memory management more explicit and improve
the performance of the reference counting as assignments to
sameregion, traditional or parentptr pointers never up-
date reference counts. Excepting one benchmark in which
reference counting overhead was negligible, we found that
between 39% and 99.98% of pointer assignments executed
were to annotated types. The correctness of assignments
to annotated pointers is enforced by runtime checks (Sec-
tion 3.2).

Our third contribution is a type system for dynamically
checked regions that provides a formal framework for anno-
tations such as sameregion, traditional and parentptr.
Analysis of the translation of RC programs into rlang, a
language based on this type system, allows us to statically
eliminate the checks from many runtime assignments to an-
notated pointers (Section 4).

The combination of type annotations and static elimina-
tion of runtime checks reduces the largest reference counting
overhead from 27% to 11% of runtime. On two benchmarks,
more than 90% of the reference counting cost is eliminated,
on three other benchmarks between 27% and 75% of the
reference counting cost is removed. Two of the three other
benchmarks already have very low reference counting over-
head (less than 1% of total execution time). For a full dis-
cussion of the results, see Section 5.

2. RELATED WORK
The statically checked region-based systems proposed by

Tofte and Talpin [13] and Crary, Walker and Morrisett [3]
include type systems that are similar to the one used in
rlang: all these systems annotate pointers with a name for
the targeted region. Walker and Morrisett [15] have en-
riched these region type systems with a form of existentially
quantified regions. Deline and Fähndrich [4] have designed
a programming language, Vault, that incorporates Walker
and Morrisett’s type system and allows static verification of
region and other resource usage. There are two important
differences between the type system of Walker and Morrisett
and rlang’s:

• Walker and Morrisett’s type system can statically ver-
ify the safety of deleteregion, while rlang’s cannot.

• rlang can represent the type structure of any existing
program. For instance, the following program cannot
be typechecked in Walker and Morrisett’s system:

region r[n];

struct data *d[m];

for (i = 0; i < n; i++) r[i] = newregion();

for (i = 0; i < m; i++)

d[i] = ralloc(r[random(0, n)], ...);

There is a type for r, but no type for d in Walker and
Morrisett’s type system. This code is not very use-
ful, but similar examples are found in real programs,
e.g., one of our benchmarks contains a list of nested
environments with each environment allocated in its
own region. Declarations are looked up in these nested
environments, with the returned pointers stored in a
separate data structure.

Our system preserves the safety of deleteregion via ref-
erence counting. We believe rlang’s gain in expressivity,
which allows straightforward porting of existing unsafe re-
gion programs to RC (even large ones such as the Apache
web server) is in most cases worth the loss of static checking
of deleteregion.

In [6] we found that our previous version of C with safe
regions, C@, had performance and space usage competi-
tive (sometimes better, sometimes slightly worse) with ex-
plicit allocation and deallocation and with garbage collec-
tion. C@’s overhead due to reference counting was reason-
able (from negligible to 17% of runtime). Our new system,
RC, has lower reference count overhead in absolute time
and as a percentage of runtime, allows use of any C com-
piler rather than requiring modification of an existing com-
piler (lcc [5] in [6]) and incorporates some static information
about a program’s region structure.

Regions were used for decades in practice, well before the
current research interest. Ross [10] presents a storage pack-
age that allows objects to be allocated in specific zones.
Each zone can have a different allocation policy, but deallo-
cation is done on an object-by-object basis. Vo’s [14] Vmal-
loc package is similar: allocations are done in regions with
specific allocation policies. Some regions allow object-by-
object deallocation; some regions can only be freed all at
once. Hanson’s [8] arenas are freed all at once. Barrett and
Zorn [1] use profiling to identify allocations that are short-
lived, then place these allocations in fixed-size regions. A
new region is created when the previous one fills up, and
regions are deleted when all objects they contain are freed.
This provides some of the performance advantages of regions
without programmer intervention, but does not work for all
programs. None of these proposals attempt to provide safe
memory management.

Stoutamire [11] adds zones, which are garbage-collected
regions, to Sather [12] to allow explicit programming for
locality. His benchmarks compare zones with Sather’s stan-
dard garbage collector. Reclamation is still on an object-by-
object basis.

Bobrow [2] is the first to propose the use of regions to
make reference counting tolerant of cycles. This idea is taken
up by Ichisugi and Yonezawa in [9] for use in distributed
systems. Neither of these papers includes any performance
measurements.

Surveys of memory management can be found in [16] for
garbage collection and [17] for explicit allocation and deal-
location.

typedef struct region *region;

region newregion(void);

region newsubregion(region r);

void deleteregion(region r);

/* ralloc, rarrayalloc are not functions (they

take a type as last argument) */

type *ralloc(region r, type);

type *rarrayalloc(region r, size_t n, type);

region regionof(void *x);

Figure 2: Region API

3. RC
From the programmer’s point of view, RC is essentially C

with a region library (Figure 2) and a few type annotations
(Section 3.2). RC programs can reuse existing C code, and
even in most cases object code (this is important as the C
runtime library is not always available in source form), as
long as the restrictions detailed in Section 3.1 are met. An
overview of the implementation of RC is given in Section 3.3.

We stress that the ideas in RC are portable to other lan-
guages. In addition, different notions of memory safety can
be realised in the RC framework. The option developed in
this paper has deleteregion abort the program when there
remain references to the region. A second option is to simply
return a failure code from deleteregion when its use would
be unsafe. A third choice is implicit region deletion: at var-
ious times, e.g., when memory is running out, the system
deallocates any regions whose reference count has dropped
to zero. This last option provides memory safety semantics
similar to traditional garbage collection.

We choose to make deleteregion explicit as this makes
RC a dialect of C: if the type annotations are removed (e.g.,
via the C preprocessor) and a region library is provided, any
RC program can be compiled with a regular C compiler. Of
course, deleteregion is then unsafe.

RC’s reference counting scheme, which keeps a count of
external references into each region, has two advantages over
traditional reference counting: the space overhead is low
(one integer per region) and cyclic data structures can be
used transparently as long as the cycles are contained within
a single region. When a cycle crosses regions, it is the pro-
grammer’s responsibility to break it before attempting to
delete any of the regions involved in the cycle.

3.1 RC Restrictions
RC imposes a number of restrictions on some unsafe, low-

level features of the C language. None of these would be
necessary if regions were added to, e.g., Java:

• Integers that do not correspond to valid pointers may
not be cast to a pointer type.

• Region pointers must always be updated explicitly:

– Copying objects containing region pointers byte-
by-byte with char * pointers is not allowed.

– Unions containing pointers are only partially sup-
ported: RC must be able to track these point-
ers, so the programmer must provide functions
to copy such unions in a type-safe way (i.e., by
copying pointers from within the union iff these
pointers are valid).

• Object code compiled by compilers other than RC can
be used so long as this code does not write or overwrite
any region pointers in the heap or in global variables.
For example, printf can be used with no problems
while memcpy and memset functions can only be used
on objects containing no pointers.

• RC does not currently support setjmp and longjmp.
This restriction could be lifted in an implementation
where reference-counting is integrated into the com-
piler.

Our current implementation does not detect these situa-
tions.

3.2 Type Annotations
Our previous version of C-with-regions, C@ [6] made a

type distinction between pointers to objects in regions and
traditional C pointers (to the stack, global data, or malloc

heap). Any conversion between these two kinds of pointers
was potentially unsafe and could lead to incorrect behaviour.
We now find this approach too cumbersome: existing code
cannot be used with regions without modification, and some
code must be provided in both traditional pointer and re-
gion pointer versions. RC has one basic kind of pointer that
can hold both region and traditional pointers. Traditional
C pointers are viewed as pointers to a distinguished “tra-
ditional region” which contains the code, stack, global data
and malloc heap.

Examination of our benchmarks shows that some point-
ers still have properties of interest to both the programmer
(to make the intent of the program clearer and to catch vi-
olations of this intent) and to the RC compiler (to reduce
the overhead of maintaining the reference counts). For ex-
ample, in our moss benchmark 94% of runtime pointer as-
signments are of traditional pointers in code produced by
the flex lexical analyser generator. RC has a traditional

type qualifier (int *traditional x) which declares that a
pointer is null or points into the traditional region. Updating
a traditional pointer never changes any reference counts.
The compiler guarantees, by static analysis or by inser-
tion of a runtime check (whose failure aborts the program),
that only pointers to the traditional region are written to
traditional pointers. Pointers declared traditional can
be used in any portion of a program where there is a need,
for whatever reason, to use conventional C memory man-
agement. Also, pointers to functions are traditional.

In our lcc benchmark, 56% of runtime pointer assign-
ments write a pointer to an object in region r into another
object in region r. Similar percentages are found in several
other benchmarks. This, combined with examination of our
benchmarks’ source code, led us to add a sameregion type
qualifier for pointers that stay within the same region or are
null. The next and data fields of Figure 1 are examples
of this annotation. We have found that sameregion equates
well with “part of the same data structure”: data structures
that are freed all at once can be allocated within the same
region, and therefore all their internal pointers can be de-
clared sameregion. As with the traditional annotation,
writes to sameregion pointers do not change any reference
counts (they do not create or destroy any external refer-
ences). The compiler ensures, as for traditional pointers,
that values written to sameregion pointers are either null
or belong to the correct region.

The Apache web server uses subregions to handle sub-
requests created to handle an original request. On our test
input, 10% of runtime pointer assignments in Apache are to
pointers that always stay within the same region or point to
a parent region. We capture these pointers with a parentptr

type qualifier. Subregions and parentptr pointers are found
in several other benchmarks. Pointers from parentptr qual-
ified pointers need not be included in the reference counts as
RC requires that subregions be deleted before their parent
regions. As with the other qualifiers, the compiler enforces
by static analysis or a runtime check that all assignments to
parentptr fields are correct.

A final type qualifier, deletes, is used on function types to
indicate functions that may delete regions (see Section 3.3.2).

3.3 Implementation
The implementation of RC is based on an RC-to-C com-

piler and a runtime library that together provide the region
API of Figure 2 (Section 3.3.1) and maintain the region’s
reference counts (Section 3.3.2). By compiling to C, we are
able to use RC with any C compiler, rather than being tied
to a particular compiler as in our previous system C@ [6].

3.3.1 Region Library
The implementation of the region library is similar to the

one in [6]: a region, defined by

struct region {

int rc, id, nextid;

struct allocator normal;

struct allocator pointerfree;

};

is composed of a reference count and two allocators, the
pointerfree allocator for objects containing only non-pointer
data or annotated pointers, and the normal allocator for all
other objects. This distinction reduces the cost of updating
reference counts when deleting a region (see below). The id

and nextid fields are described with the parentptr runtime
check implementation below.

Allocation of memory to regions is in blocks whose size
is a multiple of the page size (currently 8KB1) and which
are aligned on a page-size boundary. Each page belongs
to one region only and the library maintains a map from
pages to regions. This allows efficient implementation of
the regionof function and of reference counting.

3.3.2 Maintaining Reference Counts
Reference count updates may occur on any pointer as-

signment2 and when a region is deleted. Allocation and
deallocation occur only once, but a pointer may be assigned
many times. The straightforward implementation of ref-
erence count updates for pointer assignment (Figure 3(a))
takes 23 SPARC instructions, so maintaining reference counts
is potentially very expensive. RC reduces this cost through
use of the type annotations of Section 3.2 and by eliminating
most reference count operations for local variables.

Assignments to sameregion, parentptr and traditional

pointers only need one of the runtime checks of Figure 3(b)

1This page size need not be the same as the system’s page
size.
2Copies of structured types containing pointers can be
viewed as copying each field individually.

(a) Reference count update for *p = newval

oldval = *p;

if (regionof(oldval) != regionof(newval)) {
if (regionof(oldval) != regionof(p))

regionof(oldval)->rc−−;
if (regionof(newval) != regionof(p))

regionof(newval)->rc++;

}

(b) Annotation runtime checks for *p = newval

sameregion:
if (newval && regionof(newval) != regionof(p))

abort();

parentptr :
rn = regionof(newval); rp = regionof(p);

if (newval &&

!(rp->id >= rn->id && rp->id < rn->nextid))

abort();

traditional :
if (newval &&

regionof(newval) != traditional region)

abort();

Figure 3: Reference counting and annotation check-
ing

rather than a reference count update. These checks take be-
tween 6 and 14 SPARC instructions and do not need to read
the value being overwritten. Section 4.3 discusses how we
eliminate a significant fraction of these runtime checks. The
runtime check for parentptr relies on a depth-first num-
bering of the region hierarchy stored in the id and nextid

fields of each region. Our current implementation updates
this numbering every time a region is created, but this could
easily be replaced by a more efficient scheme.

The references from local variables need only be included
in a region’s reference count when calling deleteregion.
As we are compiling RC to C we cannot use C@’s [6] ap-
proach and have deleteregion scan the stack for point-
ers to regions from local variables. Instead, when calling a
function that may delete a region, RC increments the refer-
ence count of all regions referred to by live local variables
and decrements these reference counts on return. This ap-
proach works well as calls to functions that may delete re-
gions are much rarer than pointer assignments to local vari-
ables. RC thus needs to know which functions may delete
a region. While this information is easily derived using a
simple whole-program analysis, we sought to maintain sepa-
rate compilation of source files in RC. Therefore RC requires
that the programmer add a deletes keyword to each func-
tion that may delete a region. This annotation is part of the
function’s type (so must also be included in any prototype
for the function). The compiler requires that any function
that calls a function qualified with deletes be itself qualified
with deletes.

We investigated a more elaborate (and optimal) scheme
for placing reference count increments and decrements for
local variables, but found it had little benefit (and sometimes
a substantial compile-time cost) over the approach outlined
above. Details can be found in [7].

When deleting a region, references from the now dead
region to other regions are removed by scanning all the ob-
jects in the region, using type information recorded when

τ = µ@σ | ∃ρ/δ.τ (types)
µ = region | T [σ1, . . . , σm] (base types)
σ = ρ | R | > (region expressions)
δ = σ ≤ σ|¬δ|δ ∨ δ|(δ) (region properties)
struct T [ρ1, . . . , ρm]{field1 : τ1, . . . , fieldn : τn}

(structure declarations)

T : type names, ρ: abstract regions, R: region constants

Figure 4: Region type language

the objects were allocated. The pages of the pointerfree

allocator need not be scanned as they do not contain point-
ers to other regions. We have found that the cost of this
scan operation remains reasonable (2% or less on all bench-
marks). However, we plan to investigate ways of reducing
this cost further.

4. A REGION TYPE SYSTEM
The type annotations of Section 3.2 are a simple way for

the user to specify types from a more general region type
language (Section 4.1) which partially specifies the regions of
pointers. This type language is used in a simple region-based
language rlang (Section 4.2). By translating RC programs
into rlang, our compiler for RC can check the correctness of
some annotations and reduce the reference count overheads
in some programs (Section 4.3).

4.1 Region Types
We first define a simple model for the heap of a region-

based language. The heap H is divided into regions, each
containing a number of objects. Objects are named struc-
tures with named fields containing pointers. Pointers can
be null, point to objects, or to regions. We write AH =
{>, r1, . . . , rn} for the set of regions of H. We define a par-
tial order on AH : r′ ≤ r if r′ is a subregion of r. The region
of an object pointer is the region of the targeted object. The
region of a pointer v is > iff v = null. We define r ≤ > for
all regions r.

Figure 4 gives types for pointers reflecting this heap struc-
ture: there are pointers to regions (region), and pointers
to named records with named fields. Each type is anno-
tated with a region expression σ which specifies the region
to which values of that type point (. . . @σ). Function and
non-pointer types could be added easily to both the heap
model and type language.

Region expressions are either abstract regions ρ or ele-
ments of the set CR = R ∪ {>} of region constants. Region
constants denote regions that always exist and cannot be
deleted, such as the “traditional region”. Abstract regions
denote any region in AH . Abstract regions are introduced
existentially with the ∃ρ/δ.τ construct, which means that
ρ is a region in AH that respects the property specified
by boolean expression δ. For instance, the type ∃ρ/> ≤
>.T [. . .]@ρ represents an object of type T in any region (as
the boolean expression is always true). To simplify nota-
tion, we write true as shorthand for > ≤ > and ∃ρ as a
shorthand for ∃ρ/true. Structure definitions are parame-
terised over a set ρ1, . . . , ρm of abstract regions; structure
uses instantiate structure declarations with a set of region
expressions. Function declarations also introduce abstract
regions (see Section 4.2).

program ::= fn∗

fn ::= f [ρ1, . . . , ρm]/δ(x1 : τ1, . . . , xn : τn) : τ, δ′

is [ρ′

1, . . . , ρ
′

p]x
′

1 : τ ′

1, . . . , x
′

q : τ ′

q, s, x

s ::= s1; s2

| if x s1 s2

| while x s
| x0 = x1

| x0 = f [σ1, . . . , σm](x1, . . . , xn)
| x0 = x1.field
| x1.field = x2

| x0 = null

| x0 = new T [σ1, . . . , σm](x1, . . . , xn)@x′

| chk δ

Some predefined functions:
newregion[]/true() : ∃ρ.region@ρ, true
newsubregion[ρ]/true() : ∃ρ′/ρ′ ≤ ρ.region@ρ′, true
deleteregion[ρ]/true(r : region@ρ) : region@>, true
regionof T [ρ, ρ1, . . .]/true(x : T [ρ1, . . .]@ρ) : region@ρ, true

Figure 5: rlang, a simple imperative language with
regions

If two values point to the same abstract region ρ then
the values must specify objects in the same region. As a
consequence, if one of the values is null then ρ = > so the
other value is null too. Existentially quantified regions must
be used if two values can be null independently of each other,
but point to the same region if non-null. For instance, in

struct L[ρ] {
v : ∃ρ′.region@ρ′,
next : ∃ρ′′/ρ′′ = > ∨ ρ′′ = ρ.L[ρ′′]@ρ′′

}
x : L[ρ]@ρ

x is a list stored in region ρ of arbitrary regions. Without
the existentially quantified type the next field could not be
null as it would be in the same region as its parent (which
is obviously not null if next exists).

4.2 Region Type Checking in rlang
We chose to define rlang (Figure 5) as an imperative lan-

guage both because this is closer to C and because the prop-
erties of abstract regions are flow-sensitive: they change as
a result of function calls, field accesses and runtime checks
and so may be different at every program point.

Functions f have arguments x1, . . . , xn, local variables
x′

1, . . . , x
′

q, body s and are parameterised over abstract re-
gions ρ1, . . . , ρm. The result of f is found in variable x after
s has executed. The set of abstract regions valid in the ar-
gument and result types of f is {ρ1, . . . , ρm}. The set of
abstract regions valid in the types of local variables of f is
{ρ1, . . . , ρm, ρ′

1, . . . , ρ
′

p}. The local variables x′

1, . . . , x
′

q must
be dead before s. Functions have an input property δ that
expresses requirements that must hold between the abstract
region parameters at all calls to f . The output property
δ′ expresses properties that are known to hold between the
abstract region parameters when f returns.

The chk δ statement is a runtime check that the prop-
erty specified by δ holds. If the check fails, the program
is aborted. Instantiation and generalisation of existential
types is implicit in the rules for assignment (Figure 6) rather
than being done by explicit instantiate and generalise op-

δ, Ls ` s, δ′ x : τ δ′ ⇒ δ′′ fv(δ) ∪ fv(δ′′) ⊆ {ρ1, . . . , ρm} x′

1, . . . , x
′

q are dead before s

` f [ρ1, . . . , ρm]/δ(x1 : τ1, . . . , xn : τn) : τ, δ′′ is [ρ′

1, . . . , ρ
′

p]x
′

1 : τ ′

1, . . . , x
′

q : τ ′

q, s, x
(fndef)

x0 : τ0 x1 : τ1 δ, L ` τ0 ← τ1, δ
′, L′

δ, L ` x0 = x1, δ
′

(assign)

x0 : τ0 x1 : µ1@σ1 x1.field : τ ′

1 δ ∧ σ1 6= >, L ` τ0 ← τ ′

1, δ
′, L′

δ, L ` x0 = x1.field, δ′
(read)

x1 : µ1@σ1 x1.field : τ ′

1 x2 : τ2 δ ∧ σ1 6= >, L ` τ ′

1 ← τ2, δ
′, L′

δ, L ` x1.field = x2, δ
′

(write)

struct T [ρ1, . . . , ρm]{field1 : τ ′

1, . . . , fieldn : τ ′

n}
xi : τi δi, Li ` τ ′

i [σ1/ρ1, . . . , σm/ρm]← τi, δi+1, Li+1

x0 : τ0 x′ : region@σ′ δn+1, Ln+1 ` τ0 ← T [σ1, . . . , σm]@σ′, δ′, L′

δ1, L1 ` x0 = new T [σ1, . . . , σm](x1, . . . , xn)@x′, δ′
(new)

x0 : µ0@σ0 δ, L ` µ0@σ0 ← µ0@>, δ′, L′

δ, L ` x0 = null, δ′
(null)

fv(δ′) ⊆ L

δ, L ` chk δ′, δ ∧ δ′
(check)

δ, L ` s1, δ
′ δ′, Ls2

` s2, δ
′′

δ, L ` s1; s2, δ
′′

δ, Ls1
` s1, δ

′ δ, Ls2
` s2, δ

′′

δ, L ` if x s1 s2, δ
′ ∨ δ′′

δ ∨ δ′′, Ls ` s, δ′′

δ, L ` while x s, δ ∨ δ′′

f [ρ1, . . . , ρm]/δ′(y1 : τ ′

1, . . . yn : τ ′

n) : τ ′, δ′′

xi : τi δi, Li ` τ ′

i [σ1/ρ1, . . . , σm/ρm]← τi, δi+1, Li+1 δn+1 ⇒ δ′[σ1/ρ1, . . . , σm/ρm]
δn+1 ∧ δ′′[σ1/ρ1, . . . , σm/ρm], Ln+1 ` τ0 ← τ ′[σ1/ρ1, . . . , σm/ρm], δ′′′, L′

δ1, L1 ` x0 = f [σ1, . . . , σm](x1, . . . , xn), δ′′′
(fncall)

Assignment
σ′ ∈ L ∪ CR fv(δ′[σ′/ρ]) ⊆ L

δ ⇒ δ′[σ′/ρ] δ, L ` τ [σ′/ρ]← τ ′, δ′′, L′

δ, L ` ∃ρ/δ′.τ ← τ ′, δ′′, L′
(∃gen.)

ρ 6∈ L δ ⇒ δ′′ fv(δ′′) ⊆ L
δ′′ ∧ δ′[ρ/ρ′], L ∪ {ρ} ` τ ← τ ′[ρ/ρ′], δ′′′, L′

δ, L ` τ ← ∃ρ′/δ′.τ ′, δ′′′, L′
(∃inst.)

δ, L ` σ ← σ′, δ′, L′

δ, L ` region@σ ← region@σ′, δ′, L′

δ, L ` σ ← σ′, δ1, L1 δi, Li ` σi ← σ′

i, δi+1, Li+1

δ, L ` T [σ1, . . . , σm]@σ ← T [σ′

1, . . . , σ
′

m]@σ′, δm+1, Lm+1

σ ∈ L ∪ CR δ ⇒ σ = σ′

δ, L ` σ ← σ′, δ, L

ρ 6∈ L δ ⇒ δ′ fv(δ′) ⊆ L

δ, L ` ρ← σ′, δ′ ∧ ρ = σ′, L ∪ {ρ}

Figure 6: Region Type Checking

erations. The rest of the language is straightforward: if

and while statements assume null is false and everything
else is true; new statements specify values for the structure’s
fields; the program is executed by calling a function called
main with no arguments. Figure 5 also gives signatures
for the predefined newregion, newsubregion, deleteregion
and regionof T (one for each structure type T) functions.

We write X[σ1/ρ1, . . . , σm/ρm] for substitution of region
expressions for (free) abstract regions in region expressions,
boolean expressions and types. The notation x : τ and
x.field : τ asserts that x, or a field of x, has type τ . The set
of free abstract regions of a boolean expression δ is fv(δ).

Type checking for rlang (Figure 6) relies extensively on
boolean expressions specifying properties of abstract regions.
Statements of a function f are checked by the judgment
δ, Ls ` s, δ′. The input property δ describes the properties of
f ’s abstract regions before executing s, the output property
δ′ the properties of these abstract regions after executing s.
Instead of an explicit binding construct for abstract regions,
assignments may bind any abstract region of the assignment
target which is not in the live abstract region set Ls. This
set Ls contains f ’s abstract region parameters and the ab-
stract regions used in any live variable’s type. The output

property δ′′ of f describes properties of f ’s abstract region
parameters that hold when the function returns. If these
parameters could be rebound, then δ′′ would describe prop-
erties of some arbitrary regions used inside f rather than
of f ’s abstract region parameters. We assume that Ls is
precomputed for each statement s using a standard liveness
analysis.

The judgments δ, L ` τ1 ← τ2, δ
′, L′ of Figure 6 check

that a value of type τ2 is assignable to a location of type τ1.
These judgments take an input property δ and live abstract
region set L and produce an updated (as a result of binding
abstract regions) output property δ′ and live abstract region
set L′. The (∃gen.) rule allows assignment as long as τ2 can
be existentially quantified to match τ1. The (∃inst.) rule
allows instantiation of an existentially quantified region into
a dead abstract region ρ, and updates δ and L to reflect ρ’s
new properties. It is possible that δ described properties
of the old value of ρ, these properties are removed by us-
ing a new property δ′′, implied by δ, that does not have ρ
amongst its free variables. Base types are assignable if their
region expressions match. Two region expressions match if
δ implies they are equal or if the abstract region ρ of the
assignment target is dead. In this last case δ is updated to

reflect ρ’s new properties.
The rules for assigning local variables (assign), reading a

field (read) or writing a field (write) check that the source is
assignable to the target. Additionally, reading or writing a
field of x guarantees that x is not null, hence that x’s region
is not >. Object creation (new) is essentially a sequence of
assignments from the field values to the fields of the newly
created object, and of the newly created object to the new

statement’s target. Initialisation to null (null) requires only
that the target variable’s region be >. After execution of a
runtime check, the checked relation holds (check).

The rules for statement sequencing, if and while state-
ments are standard for a forward data-flow problem. Func-
tion definition (fndef) is straightforward: the result vari-
able’s type must match the function declaration and the
function’s output property must be implied by the function
body’s output property.

The most complicated rule is a call to a function f (fncall).
All references to elements of f ’s signature must substitute
the actual region expressions at a call for f ’s formal region
parameters. The second line checks that the call’s arguments
are assignable to f ’s parameters and that the properties at
the call site imply f ’s input property. After the call, f ’s
output property holds for the actual region expressions and
f ’s result must be assignable to the call’s destination.

We have proved the soundness of our type system, based
on a natural operational semantics for rlang and a definition
of consistency of typed values with the heap. The details and
proof are in [7].

4.3 Translating RC to the Region Type System
There are severals ways RC can be translated to rlang.

For instance, one could apply a “region inference”-like algo-
rithm [13] to RC programs, representing the results in rlang,
in an attempt to find a very precise description of the pro-
gram’s region structure. Our goal is different: we want to
translate an RC program P into an rlang program P ′ that
faithfully matches P , then analyse P ′ to verify the correct-
ness of sameregion, parentptr and traditional annota-
tions. We therefore perform a straightforward translation,
while guaranteeing the following properties of P ′:

• There is one region constant, RT , for the “traditional
region”.

• For every structured type X in P there is a structured
type X[ρ] in P ′. The abstract region ρ represents the
region in which the structure is stored. So pointers to
X in P ′ are always of the form X[σ]@σ.

A field f in X[ρ] of type T which is not sameregion,
parentptr or traditional in P can point to any re-
gion. So its type in P ′ is ∃ρ′.T [ρ′]@ρ′. A traditional

f can be null or point to the traditional region so its
type is ∃ρ′/ρ′ = >∨ ρ′ = RT .T [ρ′]@ρ′. A sameregion

f can be null or point to an object in ρ, so its type is
∃ρ′/ρ′ = > ∨ ρ′ = ρ.T [ρ′]@ρ′. Finally, a parentptr f
can point upwards in the region hierarchy (which in-
cludes being null as the region of null values is >),
so its type is ∃ρ′/ρ ≤ ρ′.T [ρ′]@ρ′ For example,

struct L { region v; L *sameregion n; };

becomes
struct L[ρ] {

v : ∃ρ′.region@ρ′, n : ∃ρ′/ρ′ = > ∨ ρ′ = ρ.L[ρ′]@ρ
}

Global variables are represented as fields of a Global

structure, stored in the traditional region, which is
passed to every function.

• Every local variable and function argument x in P ′ is
associated with a distinct abstract region ρx. If x is of
type T in P , its type becomes T [ρx]@ρx in P ′. Func-
tion arguments are never assigned or used directly as
the function result, and the destination of an assign-
ment is not used elsewhere in the assignment state-
ment. 3

• Every field assignment x1.f = x2 (with x1, x2 assumed
local) is immediately preceded by an appropriate run-
time check: chk ρx2

= >∨ρx2
= ρx1

if f is sameregion
in P ; chk ρx1

≤ ρx2
if f is parentptr; chk ρx2

=
> ∨ ρx2

= RT if f is traditional. This matches the
model for these annotations given in Section 3.2: as-
signments will abort the program if the requirements of
sameregion, parentptr or traditional are not met.

• We always represent the result of a function as an ex-
istential type. Combined with the rules above, a func-
tion f with one arguments of type T and result of type
T ′ always has signature

f [ρx]/δ(x : T [ρx]@ρx) : ∃ρ/δ′.T ′[ρ]@ρ, δ′′

for some boolean expressions δ, δ′, δ′′. This represen-
tation allows us to have the same type (ignoring the
boolean expressions) for a function returning the re-
gion of its argument (myregionof) and for a function
returning a new region (mynewregion):

myregionof[ρx]/true(x : T [ρx]@ρx) :
∃ρ/ρ = ρx.region@ρ, true

mynewregion[ρx]/true(x : T [ρx]@ρx) :
∃ρ/true.region@ρ, true

It is easy to verify that an rlang program with these prop-
erties can be type checked, under the assumption that all
function input, output and result properties sets are true.
The implementation of RC infers better properties than this
simple approximation by casting the inference of input, out-
put and result properties as a dataflow problem:

• The set of facts we consider in our analysis of a func-
tion f with abstract regions {ρ1, . . . , ρm} are: σ = >,
σ 6= >, σ1 ≤ σ2, σ1 = > ∨ σ1 = σ2 for all σ, σ1, σ2 ∈
{ρ1, . . . , ρm} ∪ CR. We call each of these facts a con-
straint. A constraint set C corresponds to the boolean
expression

∧
δ∈C δ. Our inference system replaces all

boolean expressions by these constraint sets.

• We conservatively approximate the type checking rules
for if and while by constraint set intersection. This
is safe as

(
∧

δ∈C

δ) ∨ (
∧

δ∈C′

δ)⇒
∧

δ∈(C∩C′)

δ

• Constraint sets form a finite-height lattice under set in-
clusion. The operations in the type checking rules are
all monotonic when expressed in terms of constraint
sets and there is a least solution (all properties set to

3This last restriction is due to the rules for handling liveness
in Figure 6.

C@ lea GC norc RC
0

1

2

3

4

5

6

7

8

9

cfrac
tim

e(
s)

C@ lea GC norc RC
0

2

4

6

8

10

12

14

grobner

C@ lea GC norc RC
0

1

2

3

4

5

6

mudlle

C@ lea GC norc RC
0

1

2

3

4

5

6

7

8

9

lcc

C@ lea GC norc RC
0

1

2

3

4

5

6

7

8

moss

C@ lea GC norc RC
0

1

2

3

4

5

6

tile

C@ lea GC norc RC
0

0.5

1

1.5

2

2.5

3

3.5

rc

C@ lea GC norc RC
0

1

2

3

4

5

6

7

apache

Figure 7: Execution time

Name Lines Number Mem alloc Max use
allocs (kB) (kB)

cfrac 4203 3812425 56076 102
gröbner 3219 5971710 312992 474
mudlle 5078 1594372 22354 210
lcc 12430 1002210 55637 4121
moss 2675 553986 6312 2185
tile 926 10459 309 153
rc 22823 81093 4714 4214
apache 62289 164296 30806 78

Table 1: Benchmark characteristics.

true, i.e., all constraint sets empty). Therefore it is
possible to find the best collection of constraint sets
using a greatest-fixed-point-seeking dataflow analysis
of the whole program. This greatest-fixed-point for
constraint sets is also the most precise typing possible
(using these constraint sets).

• RC restricts this dataflow analysis to a single source
file by assuming that any non-static C function and
any function called via a function pointer has empty
input, output and result constraint sets. The complex-
ity of this analysis is O(kSn4), where k is the number
of functions in a file, S the number of statements, and
n the largest number of local variables in a single func-
tion. We keep the analysis tractable by ignoring local
variables that are effectively temporaries (all uses have
a single reaching definition). The largest analysis time
on any file in our benchmarks is 30s, with all other
times being less than 10s. The analysis completes in
less than 1s for 96% of files.

Once the inference is complete, we can safely eliminate
any chk statement that asserts a property that is implied
by its input constraint set. Results of this analysis are pre-
sented in Section 5.2.

5. RESULTS
We use a set of eight small to large C benchmarks to

analyse the performance of RC: cfrac and gröbner per-
form numeric computations using large integers, mudlle,
lcc and rc are compilers, tile and moss process text and
apache is a web server. Half of these programs (mudlle,
lcc, rc, apache) were already region-based (using simple
region libraries with no safety guarantees); the other half
were converted to use regions (details can be found in [6]).
The cfrac benchmark was written with explicit reference-
counting; this hand-written reference counting is disabled

Name C@ RC Region
(s) (%) (s) (%) unscan (s)

cfrac 0.48 6% 0.02 0.4% .01
gröbner 0.88 7% 0.07 0.7% .02
mudlle 0.56 13% 0.23 6% .01
lcc 1.14 17% 0.56 11% .07
moss 0.11 2% -0.02 <0% <.01
tile 0.02 0.4% 0.00 0% <.01
rc 0.12 4% <.01
apache 0.43 8% .10

Table 2: Reference counting overhead in RC and
C@

when running cfrac with RC and conservative garbage col-
lection. Table 1 reports the benchmarks’ sizes (in lines of
code) and summarises their memory allocation behaviour:
“number allocs” is the number of objects allocated, “mem
alloc” is the total amount of memory allocated during exe-
cution of the program, “max use” is the maximum amount
of memory in use at any time.

5.1 Performance
We compared the performance of RC with our old system,

C@, with conventional malloc/free-based memory manage-
ment and with conservative garbage collection. Measure-
ments were made on a Sun Ultra 10 with a 333Mhz Ultra-
Sparc II processor, a 2MB L2 cache and 256MB of memory.

Figure 7 reports elapsed time (from the best of five runs)
for each benchmark for five compiler/allocator combinations:
“C@” is our previous region compiler (we did not convert
rc or apache to run under C@ as this would have required
substantial effort); “lea” is gcc 2.95.2 with Doug Lea’s mal-
loc/free replacement library v2.6.64 (which has much bet-
ter performance than Sun’s default malloc library); “GC”
is gcc 2.95.2 with the Boehm-Weiser conservative garbage
collector v5.3; “norc” is gcc 2.95.2 with our RC compiler
and reference counting disabled; “RC” is gcc 2.95.2 with
our RC compiler and reference counting enabled. For the
benchmarks which were originally not region-based (cfrac,
gröbner, tile, moss), the “lea” column is the execution time
obtained when running the original code. For those bench-
marks which were region-based, the “lea” column uses a sim-
ple region-emulation library that uses malloc and free to
allocate and free each individual object. The “GC” column
uses the same code as “lea”, except that calls to malloc are
replaced by calls to garbage collected allocation and calls to
free are removed. RC with reference counting always per-

4Obtainable at ftp://g.oswego.edu/pub/misc/malloc.c

nq qs inf nc

5.35

5.4

5.45

5.5

5.55

5.6

5.65

5.7

5.75

5.8

cfrac
tim

e(
s)

nq qs inf nc

9.5

10

10.5

11

11.5

grobner

nq qs inf nc

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

mudlle

nq qs inf nc
5

5.5

6

6.5

lcc

nq qs inf nc

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

moss

nq qs inf nc

3.75

3.8

3.85

3.9

3.95

4

4.05

tile

nq qs inf nc

2.95

3

3.05

3.1

3.15

3.2

rc

nq qs inf nc

5.2

5.3

5.4

5.5

5.6

5.7

apache

Figure 8: Execution time with sameregion, parentptr and traditional (non-zero time origin)

forms better than C@ and is faster than malloc/free or the
Boehm-Weiser garbage collector on cfrac, gröbner, mudlle,
moss, and tile (up to 58%). At worst, RC is 7% slower (on
rc).

Table 2 shows the reference counting cost for C@ and RC.
This cost is presented as absolute time in seconds, and as
a percentage of execution time. For RC, we also show time
spent removing references from deleted regions (“Region un-
scan”). The largest reference counting overhead is for lcc

at 11% of execution time. The region unscan accounts for
2% or less of execution time on all other benchmarks. This
table also shows that the better performance of RC over C@
is due not only to a better base compiler (gcc vs lcc) but also
to a reduction in the reference counting overhead (which is
not affected by the C compiler used). We discuss the per-
formance anomalies (negative time for reference counting)
below.

5.2 Region Type System Results
We added sameregion, parentptr and traditional an-

notations to all our benchmarks. Table 3 reports the number
of annotations we added, the number of lines of code we had
to change to allow annotations (excluding the lines with the
annotations themselves) and the percentage of assignment
statements of annotated types whose safety we were able to
check statically.

On most benchmarks the only changes were the addition
of the sameregion, parentptr and traditional keywords.
In gröbner, which represents large integers as a structure
with a pointer to an array, we allocated some of these struc-
tures in a region rather than on the stack and explicitly al-
located the array in the same region as the structure. This
allowed us to declare the pointer to the array as sameregion.
We perform a similar change in lcc. In moss and lcc we
improve the results of constraint inference by replacing some
uses of global variables (whose region is not tracked in our
region type system) by parameters, local variables and calls
to regionof (whose region is tracked).

cfrac grobner mudlle lcc moss tile rc apache
0

20

40

60

80

100

%
 o

f a
ll

no
n−

lo
ca

l a
ss

ig
nm

en
ts

safe
checked

Figure 9: Details of reference count operations

Name Keywords Lines % safe
added changed assigns

cfrac 8 0 50
gröbner 4 217 80
mudlle 75 0 88
lcc 81 62 31
moss 20 22 89
tile 21 0 84
rc 331 0 11
apache 64 0 31

Table 3: sameregion, parentptr and traditional:
static statistics

The effects on execution time of sameregion, parentptr
and traditional annotations and of our constraint infer-
ence system are shown in Figure 8. In the “nq” column,
the annotations are ignored; in “qs” the annotations are
used and checked at runtime; in “inf” the constraint infer-
ence system has removed provably safe runtime checks; in
“nc” all runtime checks are (unsafely) removed (“nc” thus
bounds the maximum improvement our inference system can
provide). Some of these results are anomalous, showing in-
creases in execution time as less work is performed. This
is particularly obvious in apache (“inf” and “nc” columns),
but is also visible in moss and rc (“nc” column). Our conclu-
sion is that our performance measurements are affected by
noise (due to minor changes in code and the process’s envi-
ronment) whose amplitude is hard to quantify, but that this
noise does not affect overall conclusions when examining a
sufficiently large set of benchmarks. The negative reference
count time above is another instance of this phenomenon.

Figure 9 presents the runtime frequencies of several cate-
gories of pointer assignments (excluding assignments to lo-
cal variables) in our benchmarks. The “safe” category is the
percentage of pointer assignments to sameregion, parentptr
or traditional pointers that were shown to be statically
safe by our constraint inference. These require no runtime
work. The next category, “checked”, is the percentage of as-
signments to sameregion, parentptr or traditional point-
ers that required a runtime check. The final category is
the difference between the top of the bar and 100% is the
percentage of assignments that required reference counting
work. The goal of our annotations is to reduce this percent-
age; the goal of our constraint inference system is to reduce
the number of “checked” pointer assignments.

From figures 8 and 9 we conclude that our type annota-
tions are important to the performance of gröbner, mudlle,
lcc, moss and to a lesser extent rc. The constraint infer-
ence system provides useful reductions in reference count

overhead in gröbner, mudlle, lcc and moss. For instance,
without any qualifiers the reference count overhead of lcc
would be 27% instead of 11%, and the overhead of mudlle
would be 23% instead of 6%. The anomalous performance
results for apache prevent any useful conclusion. In all these
benchmarks at least 39% of pointer assignments are of anno-
tated types. The programs (gröbner, mudlle, tile, moss)
where the percentage of annotated assignments is highest
are dominated by one or two data structures which use an-
notated types for their internal pointers (large integers in
gröbner, an instruction list in mudlle and the input buffer
used by code produced by the flex lexical analyser generator
in tile, moss and mudlle). In cfrac essentially all pointer
assignments are of pointers to local variables used for by-
reference parameters in functions with signatures such as

int *pdivmod(int *u, int *v, int **qp, int **rp)

We do not think this is representative of typical programs.
The effectiveness of our constraint inference system in ver-

ifying the safety assignments to sameregion and traditional

pointers, and hence eliminating runtime checks, is also vari-
able. Most checks remain in lcc, while virtually all are
eliminated in gröbner, tile and moss. We illustrate here,
using the linked list type of Figure 1, the kinds of code
whose safety our system successfully or unsuccessfully veri-
fies. The examples will assume the following local variables
are declared:

struct rlist {

struct rlist *sameregion next;

struct finfo *sameregion data;

} *x, *y;

region r;

struct rlist **objects[100];

A simple idiom that is successfully verified is the creation
of the contents of x after x itself exists:

x = ralloc(r, ...);

x->next = ralloc(regionof(x), ...);

Similar situations often arise with imperative data struc-
tures such as hash tables (as in moss). The large integers in
gröbner also follow this pattern.

Our constraint inference system remains successful on fairly
complex loops as long as all the variables are locals or func-
tion parameters. For instance, we can successfully verify
all the assignments in Figure 1. A more elaborate version
of this loop (involving inter-procedural analysis) is found in
moss and is also verified.

The sameregion, parentptr and traditional annota-
tions allow verification of some code that accesses data from
the heap (or from global variables), e.g.:

x = ralloc(regionof(y), ...);

x->next = y->next;

The traditional annotations in the code generated by the
flex lexical analyser generator used by tile, moss and mudlle

are more complex examples (also involving inter-procedural
analysis) of this.

Other constructions do not work so well. Nothing is known
about objects accessed from arbitrary arrays, e.g.:

x = ralloc(r, ...);

x->next = objects[23];

The parse stack used in the code generated by the bison
parser generator is like the objects array and prevents ver-
ification of the construction of parse trees in mudlle and rc

(which use sameregion pointers).
Most of the benchmarks allocate memory in a region stored

in a global variable, partly as an artifact of converting the
programs to use regions (adding a region argument to every
function would have been painful), and partly as a result of
using bison generated parsers (the parsing actions only have
access to the parsing state and to global variables). Our
region type system does not represent the region of global
variables, so verification of annotations often fails in these
programs. Where possible, we changed these programs to
keep regions in local variables, or used regionof to find the
appropriate region in which to allocate objects.

The final case which our system does not handle well is
hand-written constructors such as:

rlist *new_rlist(region r, rlist *next)

{

rlist *new = ralloc(r, ...);

new->next = next;

return new;

}

To verify the assignment to next, our system must verify
that at every call to new rlist, next is null or in the same
region as r. This is often not possible, e.g., in rc where these
functions are called from a bison generated parser. It is not
possible to apply a technique similar to the first idiom and
replace the allocation with:

rlist *new = ralloc(regionof(next), ...);

because next may be null.5

6. CONCLUSION AND FUTURE WORK
We have designed and implemented RC, a dialect of C

extended with safe regions. RC programs perform competi-
tively with malloc/free or garbage collection based programs
(from 7% slower to 58% faster) on our benchmarks. The
overhead of safety is low (11% or less) on all benchmarks.
This overhead is achieved with the help of type annotations
that allow the programmer to easily declare some aspects
of the program’s region structure. We generalise these an-
notations into a type system for reference-counted region
systems. Analysis of RC programs rewritten with these
types allows us to eliminate a substantial fraction of the
runtime checks implied by the type annotations (from 21%
to 99.99%).

The current translation from RC into our region type sys-
tem is very simple. There is scope for both a more elaborate
translation and for more annotations in RC to make a pro-
gram’s region structure more explicit.

5In a new language it would be possible to have a separate
null value for each region, which would allow this idiom
to work. It is not clear whether this would be otherwise
desirable.

7. REFERENCES
[1] D. A. Barrett and B. G. Zorn. Using Lifetime

Predictors to Improve Memory Allocation
Performance. In Proceedings of the ACM SIGPLAN
’93 Conference on Programming Languages Design
and Implementation, pages 187–196, Albuquerque,
New Mexico, June 1993.

[2] D. G. Bobrow. Managing Re-entrant Structures using
Reference Counts. ACM Transactions on
Programming Languages and Systems, 2(3):269–273,
July 1980.

[3] K. Crary, D. Walker, and G. Morrisett. Typed
Memory Management in a Calculus of Capabilities. In
Conference Record of POPL ’99: The 26th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 262–275, San Antonio,
Texas, Jan. 1999.

[4] R. Deline and M. Fähndrich. Enforcing High-Level
Protocols in Low-Level Software. In Proceedings of the
ACM SIGPLAN ’01 Conference on Programming
Language Design and Implementation, Snowbird,
Utah, June 2001.

[5] C. W. Fraser and D. R. Hanson. A Retargetable C
Compiler: Design and Implementation.
Benjamin/Cummings Pub. Co., Redwood City, CA,
USA, 1995.

[6] D. Gay and A. Aiken. Memory Management with
Explicit Regions. In Proceedings of the ACM
SIGPLAN ’98 Conference on Programming Language
Design and Implementation, pages 313–323, Montréal,
Canada, June 1998.

[7] D. Gay and A. Aiken. Language Support and
Compilation Techniques for Regions. Technical Report
UCB//CSD-00-1115, EECS Department, University of
California, Berkeley, Nov. 2000.

[8] D. R. Hanson. Fast Allocation and Deallocation of
Memory Based on Object Lifetimes. Software Practice
and Experience, 20(1):5–12, Jan. 1990.

[9] Y. Ichisugi and A. Yonezawa. Distributed Garbage
Collection Using Group Reference Counting. In
OOPSLA/ECOOP ’90 Workshop on Garbage
Collection in Object-Oriented Systems, Oct. 1990.

[10] D. T. Ross. The AED Free Storage Package.
Communications of the ACM, 10(8):481–492, Aug.
1967.

[11] D. Stoutamire. Portable, Modular Expression of
Locality. PhD thesis, University of California at
Berkeley, 1997.

[12] D. Stoutamire and S. Omohundro. The Sather 1.1
Specification. Technical Report TR-96-012,
International Computer Science Institute, Berkeley,
CA, August 1996.

[13] M. Tofte and J.-P. Talpin. Region-Based Memory
Management. Information and Computation,
132(2):109–176, Feb. 1997.

[14] K.-P. Vo. Vmalloc: A General and Efficient Memory
Allocator. Software Practice and Experience,
26(3):357–374, Mar. 1996.

[15] D. Walker and G. Morrisett. Alias Types for Recursive
Data Structures. Technical Report TR2000-1787,
Cornell University, Mar. 2000.

[16] P. R. Wilson. Uniprocessor Garbage Collection
Techniques. In Proceedings of International Workshop
on Memory Management, volume 637 of Lecture Notes
in Computer Science, St Malo, France, Sept. 1992.
Springer-Verlag.

[17] P. R. Wilson, M. S. Johnstone, M. Neely, and
D. Boles. Dynamic Storage Allocation: A Survey and
Critical Review. In Proceedings of International
Workshop on Memory Management, volume 986 of
Lecture Notes in Computer Science, Kinross, Scotland,
Sept. 1995. Springer-Verlag.

